Skip to main content

Advertisement

Log in

Problems, progress and future prospects of improvement of Commiphora wightii (Arn.) Bhandari, an endangered herbal magic, through modern biotechnological tools: a review

  • Notes on Neglected and Underutilized Crops
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Commiphora wightii (Arn.) Bhandari syn. C. mukul Engl. (Burseraceae) is an economically and pharmacologically important slow growing, dioecious, balsamiferous woody, multipurpose shrub heading towards extinction. Commonly known as “Guggul” due to the presence of steroidal compound guggulsterone in the oleo-gum resin, it has been used in treating various ailments and disorders since ancient times (2000 B.C.). Evaluation and confirmation of hypolipidemic effects of guggul based on Ayurvedic text in 1960s provided a new insight into its pharmacological applications. Two bioactive isomers of guggulsterone, E and Z, are responsible for lipid- and cholesterol-lowering activities. Recently, it has been shown to have anti-cancerous activity also. It is found in the dry regions of Indian subcontinent, namely India, Pakistan and Bangladesh. Ruthless and unscientific harvesting of oleo-gum resin from the wild, by local populations, for economic benefits with negligible conservation efforts has made this species endangered and has led to its inclusion in Red Data Book of IUCN. Although this plant has many excellent traits, adequate attention has not been focused on its conservation and improvement. Conventional propagation methods i.e., seeds, cuttings and air layering are in place but have many limitations. Therefore, application of modern biotechnological tools needs to be standardized for harnessing maximum benefits from this pharmaceutically important plant. An efficient regeneration system needs to be in place for improvement of this genus through genetic transformation and production of useful metabolites in cell cultures. Studies are in progress for micropropagation through shoot multiplication and somatic embryogenesis, as well as for secondary metabolite (guggulsterone) production in callus cultures and bioreactors. No selected germplasm is available for C. wightii since it is a wild plant. Breeding programs have not yet been started due to lack of systematic cultivation and conservation programs. Moreover, little information has been gathered regarding the genetic variability in this species using RAPD and ISSR markers. No details are available about genetic makeup and QTL linkage maps. Investigations are in progress to search sex linked markers in this dioecious species. Research is also in progress to decipher the molecular mechanisms underlying various pharmacological actions of guggul. Since the approval of use of guggul as a food supplement by United States Food and Drug Administration in 1994, an exponential increase in research publications on various aspects of research on guggul have been published. Present communication summarizes the problems, progress made and suggests some future directions of research for this important endangered medicinal plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abegaz V, Dagne E, Bates C, Waterman PG (1989) Chemistry of the Burseaceae. Part 12. Monoterpene-rich resins from two Ethiopian species of Commiphora. Flav Frag J 4:99–101

    Article  CAS  Google Scholar 

  • Agrawal H, Kaul N, Paradkar AR, Mahadik KR (2004a) HPTLC method for guggulsterone II. Stress degradation studies on guggulsterone. J Pharmaceut Biomed Anal 36:23–31

    Article  CAS  Google Scholar 

  • Agrawal H, Kaul N, Paradkar AR, Mahadik KR (2004b) HPTLC method for guggulsterone II. Quantative determination of E- and Z-guggulsterone in herbal extract and pharmaceutical dosage form. J Pharmaceut Biomed Anal 36:33–41

    Article  CAS  Google Scholar 

  • Ahmed R, Ali Z, Wu Y, Kulkarni S, Avery MA, Choudhary MI, Khan IA (2011) Chemical characterization of a commercial Commiphora wightii resin sample and chemical profiling to assess for authenticity. Planta Med 77:945–950

    Article  PubMed  CAS  Google Scholar 

  • Al-Howiriny T, Al-Sohaibani M, Al-Said M, Al-Yahya M, El-Tahir K, Rafatullah S (2005) Effect of Commiphora opobalsamum (L.) Engl. (Balessan) on experimental gastric ulcers and secretion in rats. J Ethnopharmacol 98:287–294

    Article  PubMed  Google Scholar 

  • Aliyu R, Gatsing D, Umar HS (2002) Antimicrobial activity and phytochemical screening of the leaves of Commiphora africana. West African J Biol Sci 13:75–80

    Google Scholar 

  • Aliyu R, Adebayo AH, Gatsing D, Garba IH (2007) The effect of ethanolic leaf extract of Commiphora africana (Burseraceae) on rat liver and kidney functions. J Pharmacol Toxicol 2:373–379

    Article  Google Scholar 

  • Arid land greenhouses (2011) www.aridlands.com/catalog/product_info.php?products_id

  • Ashry KM, El-Sayed YS, Khamiss RM, El-Ashmawy IM (2009) Oxidative stress and immunotoxic effects of lead and their amelioration with myrrh (Commiphora molmol) emulsion. Food Chem Toxicol 48:236–241

    PubMed  Google Scholar 

  • Asres K, Tei A, Moges G, Sporer F, Wink M (1998) Terpenoids composition of the wound—induced bark exudate of Commiphora tenuis from Ethiopia. Planta Med 64:437–475

    Article  Google Scholar 

  • Atal CK, Gupta OP, Afaq SH (1975) Commiphora mukul, source of guggul in Indian system of medicine. Eco Bot 29:208–218

    Article  Google Scholar 

  • Awadh Ali NA, Wurster M, Lindequist NAU, Wessjohann L (2008) Essential oil composition from oleo-gum resin of Soqotraen Commiphora kua. Rec Nat Prod 2:70–75

    Google Scholar 

  • Ayedoun MA, Moudachirou M, Tomi F, Casanova J (1997) Identification by 13C NMR and by GC/MS of the principal components of essential oils from Xylopia aethiopica (dunal) Richard and of Commiphora africana from Benin. J Soc Quest-Afr Chi 2:29–35

    CAS  Google Scholar 

  • Ayedoun MA, Sohounhloue DK, Menut C, Lamaty G, Molangui T, Casanova J, Tomi (1998) Aromatic plants of Tropical West Africa. VI. α-Oxobisabolene as main constituent of the leaf essential oil of Commiphora africana (A. Rich.) Engl. from Benin. J Essent Oil Res 10:105–107

    Article  CAS  Google Scholar 

  • Barsa AS (1994) Mechanism of plant growth and improved productivity: modern approaches. Marcel Dekker, New York

    Google Scholar 

  • Barve DM, Mehta AR (1987) Effect of cultural parameters on the growth of cell cultures and production of B-C-3 sterols and guggulsterone in C. wightii. In: Reddy G M (ed) Proceedings of symposium on plant cell econ imp plant. Hyderabad, India

  • Barve DM, Mehta AR (1993) Clonal propagation of mature elite trees of Commiphora wightii. Plant Cell, Tissue Organ Cult 35:237–244

    Article  Google Scholar 

  • Baser KHC, Demirci B, Dekebo A, Dagne E (2003) Essential oils of some Boswellia spp, Myrrh and Opoponax. Flav Frag J 18:153–156

    Article  CAS  Google Scholar 

  • Battu GR, Zeitlin IJ, Gray AI, Waterman PG (1999) Inhibitory actions on rat myeloperoxidease of molecules isolated from anti-inflammatory extracts of Commiphora kua. Brit J Pharmacol 128(Suppl):274

    Google Scholar 

  • Bhandari MM (1964) Notes on Indian desert plants- Four new names and combinations. Bull Bot Survey India 6:327–328

    Google Scholar 

  • Bhatt GK, Dixit RD (1974) A preliminary study on extensive cultivation of guggul at Mangliawas Hebal Farm, Ajmer, Rajasthan. J Res Ind Med 9:51–58

    Google Scholar 

  • Bhatt JR, Nair MNB, Mohanram HY (1989) Enhancement of oleogum resin production in Commiphora wightii by improved tapping technique. Curr Sci 58:349–354

    Google Scholar 

  • Birkett MA, Al Bassi S, Krober T, Chamberlain K, Hooper AM, Guerin PM, Pettersson J, Pickett JA, Slade R, Wadhams LJ (2008) Antiectoparasitic activity of the gum resin, gum haggar, from the East African plant, Commiphora holtziana. Phytochem 69:1710–1715

    Article  CAS  Google Scholar 

  • Bosely JA, Brown AL, Rogers JS (2004) Food composition for reducing insulin resistance. US Patent No. 6,737,442 B2

  • Caputi M, Groeger AM, Esposito V, Dean C, De Luca A, Pacilio C, Muller MR, Giordano GG, Baldi F, Wolner E, Giordano A (1999) Prognostic role of cyclin D1 in lung cancer- Relationship to proliferating cell nuclear antigen. Am J Respir Cell Mol Biol 20:746–750

    PubMed  CAS  Google Scholar 

  • Cardoso do Vale J (1962) Chemical study of the barks of Commiphora angolensis. Bol Escola Farm Univ Coimbra Ed Cient 22:113–128

    Google Scholar 

  • Carroll JF, Maradufu A, Warthen JD Jr (1989) An extract of Commiphora erythraea: a repellent and toxicant against ticks. Entomol Exp Appl 53:111–116

    Article  Google Scholar 

  • Cavanagh IS, Cole MD, Gibbons S, Gray AI, Provan GJ, Waterman PG (1993) Chemistry of the Burseraceae. Part 16. A novel sesquiterpene, 1, 2-epoxyfurano-10(15)-germacren-6-one, from the resin of Commiphora holtziana Engl. Flav Frag J 8:39–41

    Article  CAS  Google Scholar 

  • Chander R, Rizvi F, Khanna AK, Pratap R (2003) Cardioprotective activity of synthetic guggulsterone (E- and Z-isomers) in isoproterenol induced myocardial ischemia in rats: a comparative study. Indian J Clinical Biochem 18:71–79

    Article  CAS  Google Scholar 

  • Chaturvedi DD, Yadav BBL, Mishra KP (1987) Cultivation/extraction of gum-oleo-resin of Commiphora wightii (Arn.) Bhandari at Guggul Herbal Farm, Mangliawas—problems and prospects. Bull Med Ethno Res 8:166–170

    Google Scholar 

  • Cheon JH, Kim JS, Kim JM, Kim N, Jung HC, Song IS (2006) Plant sterol guggulsterone inhibits Nuclear Factor-kB signaling in intestinal epithelial cells by blocking IkB kinase and ameliorates acute murine colitis. Inflamm Bowel Dis 12:1152–1161

    Article  PubMed  Google Scholar 

  • Ciuffarella L (1998) Palynological analyses of resinous materials from the roman mummy of Grottarossa, second century A.D.: a new hypothesis about the site of mummification. Rev Palaeobot Palynol 103:201–208

    Article  Google Scholar 

  • Claeson P, Andersson R, Samuelsson G (1991) T-cadinol– a pharmacologically active constituent of scented myrrh—introductory pharmacological characterization and high-field h-1-NMR and c-13- NMR data. Planta Med 57:352–356

    Article  PubMed  CAS  Google Scholar 

  • Claeson P, Radstrom P, Skold O, Nilsson A, Hoglund S (1992) Bactericidal effect of the sesquiterpene T-cadinol on Staphylococcus aureus. Phytotherapy Res 6:94–98

    Article  CAS  Google Scholar 

  • Council of Europe (1981) Partial agreement in the Social and Public Health Field. Flavouring substances and natural sources of flavourings. List N2, no. 150. Editeur Maisonneuve, Strasbourg SA

  • Craveiro A, Corsano S, Proietti G, Strappaghetti G (1983) Constituents of essential oil of Commiphora guidottii. Planta Med 48:97–98

    Article  PubMed  CAS  Google Scholar 

  • Dalal KC (1989) Gemplasm collection and therapeutic, botanical, agriculture, chemical and clinical aspects of the endangered indigenous plant guggal (Commiphora wightii (Arn.) Bhand. A status cum review report, 8th workshop at Faizabad, Dec 1989

  • Dass S, Ramawat KG (2009a) Calcium deprivation markedly enhances guggulsterone accumulation in cell cultures of Commiphora wightii. Curr Sci 96:1022–1024

    CAS  Google Scholar 

  • Dass S, Ramawat KG (2009b) Elicitation of guggulsterone production in cell cultures of Commiphora wightii by plant gums. Plant Cell Tiss Organ Cult 96:349–353

    Article  Google Scholar 

  • Dass S, Ramawat KG (2009c) Studies on somatic cell variability in Commiphora wightii (Arn.) Bhandari for guggulsterone production. Nat Prod Radiance 8:532–536

    Google Scholar 

  • Dass S, Tanwar YS, Ramawat KG (2008) Commiphora wightii callus cultures: a new source of Anthocynin. J Herbal Med Toxicol 2:17–20

    CAS  Google Scholar 

  • Dekebo A, Dagne E, Curry P, Gautun OR, Aasen AJ (2002) Dammarane triterpenes from the resins of Commiphora confusa. Bull Chem Soc Ethiopia 16:81–86

    CAS  Google Scholar 

  • Deng R (2007) Therapeutic effects of guggul and its constituent guggulsterone: cardiovascular benefits. Cardiovascular Drug Rev 25:375–390

    CAS  Google Scholar 

  • Dev S (1989) Chemistry of Commiphora mukul and development of a hypolipidemic drug. In: Rehman A (ed) Studies in natural product chemistry. Elsevier, Amsterdam, pp 695–719

    Google Scholar 

  • Dharmananda S (2003) Myrrh and Frankincense. http://www.itmonline.org/arts/myrrh.htm

  • Duwiejua M, Zeitlin IJ, Waterman PG, Chapman J, Mhango GJ, Provan GJ (1993) Anti-inflammatory activity of resins from some species of the plant family Burseraceae. Planta Med 59:12–16

    Article  PubMed  CAS  Google Scholar 

  • El Ashry ES, Rashed N, Salama OM, Saleh A (2003) Components, therapeutic value and uses of myrrh. Pharmazie 58:163–168

    PubMed  Google Scholar 

  • Evans WC (1989) Trease and evans pharmacognosy, 13th edn. Bailliere Tindall, London, pp 474–475

    Google Scholar 

  • FAO (1995) Flavours and fragrances of plant origin. Non-wood forest products 1. Food and Agricultural Organization (FAO), Rome

  • Farah AY (1994) The milk of the Boswellia Forests. Frankincense production among the pastoral Somali. (Tia Riitta Hjort af Ornas ed.) EPOS, Uppsala University, Uppsala, Sweden, pp 1–142

  • Fatope MO, Al-Burtomani SKS, Ochei JO, Abdulnour AO, Al- Kindy MZ, Takeda Y (2003) Muscanone: a 3-O-(1′’,8′’14′’-trimet hylhexadecanyl)naringenin from Commiphora wightii. Phytochem 62:1251–1255

    Article  CAS  Google Scholar 

  • Ford RA, Api AM, Letizia CS (1992) Monographs on fragrance raw materials. Food Chem Toxicol 30(Suppl):1S–138S

    PubMed  CAS  Google Scholar 

  • Fourie TG, Snyckers FO (1989) A pentacyclic triterpene with anti-inflammatory and analgesic activity from the roots of Commiphora merkeri. J Nat Prod 52:1129–1131

    Article  PubMed  CAS  Google Scholar 

  • Francis JA, Raja SN, Nair MG (2004) Bioactive terpenoids and guggulusteroids from Commiphora mukul gum resin of potential anti-inflammatory interest. Chem Biodiv 1:1842–1853

    Article  CAS  Google Scholar 

  • Gajbhiye NA, Jayanti S, Makasana, Geetha KA (2011) Chemical screening of guggul (Commiphora wightii) accessions collected from different natural habitats of Gujarat. epubs.icar.org.in/ejournal/index.php/JMAP/article/download/4389/1724

  • Goyal C, Ahuja M, Sharma S (2011) Preparation and evaluation of anti-inflammatory activity of gugulipid-loaded proniosomal gel. Acta Pol Pharma Drug Res 68:147–150

    CAS  Google Scholar 

  • Gujral ML, Sareen K, Tangri KK, Amma MK, Roy AK (1960) Antiarthritic and anti-inflammatory activity of gum guggul (Balsamodendron mukul Hook). Indian J Physiol Pharmacol 4:267–273

    PubMed  CAS  Google Scholar 

  • Gupta A, Kapoor NK, Nityanand S (1982) Mechanism of hypolipidemic action of standardized extract. Indian J Pharmacol 14:65

    Google Scholar 

  • Gupta P, Shivanna KR, Mohan Ram HY (1996) Apomixis and polyembryony in the guggul plant, Commiphora wightii. Ann Bot 78:67–72

    Article  Google Scholar 

  • Gupta P, Shivanna KR, Mohan Ram HY (1998) Pollen-pistil interaction in a non-pseudogamous apomict, Commiphora. Ann Bot 81:589–594

    Article  Google Scholar 

  • Habtemariam S (2003) Cytotoxic and cytostatic activity of erlangerins from Commiphora erlangeriana. Toxicon 41:723–727

    Article  PubMed  CAS  Google Scholar 

  • Haffor AS (2009) Effect of myrrh (Commiphora molmol) on leukocyte levels before and during healing from gastric ulcer or skin injury. J Immunotoxicol 7:68–75

    Article  CAS  Google Scholar 

  • Hanuš O, Rezankab T, Dembitsky VM, Moussaieff A (2005) Myrrh—Commiphora chemistry. Biomed Papers 149:3–28

    Google Scholar 

  • Haque S, Farooqi AHA, Gupta MM, Sangwan RS, Khan A (2007) Effect of ethrel, chlormequat, chloride and paclobutrazol on growth and pyrethrins accumulation in Chrysanthemum cinerariaefolium Vis. Plant Growth Regul 51:263–269

    Article  CAS  Google Scholar 

  • Haque I, Bandopadhyay R, Mukhopadhyay K (2009a) Intraspecific variation in Commiphora wightii populations based on internal transcribed spacer (ITS-5.8S-ITS2) sequence of rDNA. Diversity 1:89–101

    Article  CAS  Google Scholar 

  • Haque I, Bandopadhyay R, Mukhopadhyay K (2009b) Population genetic structure of the endangered and endemic medicinal plant Commiphora wightii. Mol Biol Rep 37:847–854

    Article  PubMed  CAS  Google Scholar 

  • Hough L, Jones JKN, Wadman WH (1952) Some observations on the constitution of Gum Myrrh. J Chem Soc 796–800. doi:10.1039/JR9520000796

  • Hu CY, Wang PG (1983) Meristem, shoot tip and bud culture. In: Evans DA, Sharp WR, Ammirato PV, Yamada Y (eds) Handbook of plant cell culture. MacMillan Publ Co, New York 1:177–227

  • ICH (1993) Q1A stability testing of new drug substances and products. International conference on harmonization, IFPMA, Geneva

  • IUCN (2011) IUCN red list of threatened species. Version 2011.1. <www.iucnredlist.org>

  • Jain A, Gupta VB (2006) Chemistry and pharmacological profile of guggul- a review. Indian J Trad Know 5:478–483

    Google Scholar 

  • Jain A, Rout GR, Raina SN (2002) Somatic embryogenesis and plant regeneration from callus culture of Phlox paniculata Linn. Sci Hort 94:137–143

    Article  CAS  Google Scholar 

  • Kalia RK, Singh R, Rai M, Mishra GP, Singh SR, Dhawan AK (2011) Biotechnological interventions in sea buckthorn (Hippophae L.): current status and future prospects. Trees 25:559–575

    Article  Google Scholar 

  • Kalpesh BI, Mohan JSS (2008) Intraspecific isozymes variation in Commiphora wightii (Arn.) Bhandari: a traditional hypocholesteremic medicinal shrub from Gujarat, India. J Herb Spices Med Plants 13:25–40

    Google Scholar 

  • Kant T, Prajapati S, Parmar A (2010) Efficient micropropagation from cotyledonary node cultures of Commiphora wightii (Arn.) Bhandari, an endangered medicinally important desert plant. J Plant Dev 17:37–48

    Google Scholar 

  • Kimura I, Yoshikawa M, Kobayashi S, Sugihara Y, Suzuki M, Oominami H, Murakami T, Matsuda H, Doiphode VV (2001) New triterpenes, myrrhanol A and myrrhanone A, from guggul gum resins, and their potent anti-inflammatory effect on adjuvant induced air-pouch granuloma of mice. Bioorg Med Chem Lett 11:985–989

    Article  PubMed  CAS  Google Scholar 

  • Kshetrapal S, Sharma R (1993) Studies on the effect of various plant extracts on the sprouting behaviour of cuttings of Commiphora wightii (Arn.) Bhandari and C. agallocha Engl. J Indian Bot Soc 72:73–75

    Google Scholar 

  • Kumar S, Suri SS, Sonie KC, Ramawat KG (2003) Establishment of embryonic cultures and somatic embryogenesis in callus culture of guggul—Commiphora wightii (Arn.) Bhandari. Indian J Exp Biol 4:69–77

    Google Scholar 

  • Kumar S, Suri SS, Sonie KC, Ramawat KG (2004) Development of resin canals during somatic embryogenesis in callus culture of Commiphora wightii. Indian J Biotechnol 3:267–270

    Google Scholar 

  • Kumar S, Mathur M, Jain AK, Ramawat KG (2006) Somatic embryo proliferation in Commiphora wightii and evidence for guggulsterone production in culture. Indian J Biotechnol 5:217–222

    CAS  Google Scholar 

  • Lal H, Kasera KP (2010) Status and distribution range of Guggul: a critically endangered medicinal plant from the Indian Thar Desert. Sci Cult 76:531–533

    Google Scholar 

  • Lather A, Gupta V, Bansal P, Sahu M, Sachdeva K, Ghaiye P (2011) An ayurvedic polyherbal formulation Kaishore Guggulu. Int J Pharma Biol Arch 2:497–503

    Google Scholar 

  • Lemenih M, Teketay D (2003) Frankincense and myrrh resources of Ethiopia: medicinal and industrial uses. Ethiop J Sci 26:161–172

    Google Scholar 

  • Leung AY (1980) Encyclopaedia of common natural ingredients used in food, drugs and cosmetics. Wiley, New York, pp 241–242

    Google Scholar 

  • Lv N, Song MY, Kim EK, Park JW, Kwon KB, Park BH (2008) Guggulsterone, a plant sterol, inhibits NF-kappaB activation and protects pancreatic beta cells from cytokine toxicity. Mol Cell Endocrinol 289:49–59

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Jones SH, Hecht SM (2005) A dihydroflavonol glucoside from Commiphora africana that mediates DNA strand scission. J Nat Prod 68:115–117

    Article  PubMed  CAS  Google Scholar 

  • Mabberley DJ (2008) Mabberley’s Plant-book: a portable dictionary of plants, their classification and uses. Cambridge University Press, Cambridge

    Google Scholar 

  • Macha MA, Matta A, Chauhan SS, Siu MKW, Ralhan R (2010) 14-3-3 zeta is a molecular target in guggulsterone induced apoptosis in head and neck cancer cells. BMC Cancer 10:655. doi:10.1186/1471-2407-10-655

    Article  PubMed  CAS  Google Scholar 

  • Maheshwari DV (2010) Guggul plantation shows good success in Kutch. Find Articles/Business/DNA: Daily News &amp; Analysis; Mumbai/July 23

  • Malhotra CL, Agrawal YL, Mehta VL, Prasad S (1970) The effect of various fractions of gum guggul on experimentally produced hypercholesterolemic in chicks. Indian J Med Res 58:394–395

    PubMed  CAS  Google Scholar 

  • Manguro LO, Mukonyi KM, Gethiomi JK (1996) Bisabolenes and furanosesquiterpenoids of Kenyan Commiphora kua resin. Planta Med 62:84–85

    Article  PubMed  CAS  Google Scholar 

  • Marcotullio M, Santi C, Mwankie G, Curini M (2009) Chemical composition of the essential oil of Commiphora erythraea. Nat Prod Commun 4:1751–1754

    PubMed  CAS  Google Scholar 

  • Mathur M, Jain AK, Ramawat KG (2007a) Optimization of guggulsterone production in callus cultures of Commiphora wightii (Arn.) Bhandari. Indian J Biotchnol 6:525–531

    CAS  Google Scholar 

  • Mathur M, Jain AK, Dass S, Ramawat KG (2007b) Guggulserone production in cell suspension cultures of Commiphora wightii grown in shake flask and bioreactors. Biotechnol Lett 29:979–982

    Article  PubMed  CAS  Google Scholar 

  • Matsuda H, Morikawa T, Ando S, Oominami H, Murakami T, Kimura I, Yoshikawa M (2004) Absolute stereostructures of polypodane-type triterpenes, myrrhanol A and myrrhanone A, from guggul-gum resin (the resin of Balsamodendron mukul). Chem Pharm Bull 52:1200–1203

    Article  PubMed  CAS  Google Scholar 

  • McDowell PG, Lwande W, Deans SG, Waterman PG (1988) Volatile resin exudate from stem bark of Commiphora rostrata: potential role in plant defence. Phytochem 27:2519–2521

    Article  CAS  Google Scholar 

  • Meselhy R (2003) Inhibition of LPS-induced NO production by the oleo-gum resin of Commiphora wightii and its constituents. Phytochem 62:213–218

    Article  CAS  Google Scholar 

  • Mesorb B, Nesbitt MR, Pandey CR (1998) High-performance liquid chromatographic method for fingerprinting and quantative determination of E- and Z-guggulsterones in Commiphora mukul resin and its products. J Chromatogr 720:189–196

    Article  Google Scholar 

  • Meyer AS (2000) Alternative focus: the promise of Guggul. HIV Resour Rev l5:1–7

    Google Scholar 

  • Mothana RA, Lindequist U, Gruenert R, Bednarski PJ (2009) Studies of the in vitro anticancer, antimicrobial and antioxidant potentials of selected Yemeni medicinal plants from the island Soqotra. BMC Complement Altern Med 9:7. doi:10.1186/1472-6882-9-7

    Article  PubMed  CAS  Google Scholar 

  • Mothana RA, Al-Rehaily AJ, Schultze W (2010) Chemical analysis and biological activity of the essential oils of two endemic Soqotri Commiphora species. Molecules 15:689–698

    Article  PubMed  CAS  Google Scholar 

  • Murray MT (1995) The healing power of herbs: the enlightened person’s guide to the wonders of medicinal plants, 2nd ed. pp 197–202

  • Nadkarni AK (1954) Indian materia medica, vol 1. Popular Book Depot, Bombay, pp 167–170

    Google Scholar 

  • Niranjan R, Kamat P, Nath C, Shukla R (2010) Evaluation of guggulipid and nimesulide on production of inflammatory mediators and GFAP expression in LPS stimulated rat astrocytoma, cell line (C6). J Ethnopharmacol 127:625–630

    Article  PubMed  CAS  Google Scholar 

  • Nohr A, Rasmussenb B, Straandc J (2009) Resin from the mukul myrrh tree, guggul, can it be used for treating hypercholesterolemia? A randomized, controlled study. Comp Therapies Med 17:16–22

    Article  Google Scholar 

  • Ojha KS, Nandave M, Arora S, Mehra DR, Joshi S, Narang R, Arya DS (2008) Effect of Commiphora mukul extract on cardiac dysfunction in isoproterenol induced myocardial infraction. Indian J Exp Biol 46:646–652

    PubMed  Google Scholar 

  • Panda S, Kar A (1999) Gugulu (Commiphora mukul) induces triiodothyronine production: possible involvement of lipid peroxidation. Life Sci 65:137–141

    Article  Google Scholar 

  • Paraskeva MP, Van Vuuren SF, Van Zyl RL, Davids H, Viljoen AM (2008) The in vitro biological activity of selected South African Commiphora species. J Ethnopharmacol 119:673–679

    Article  PubMed  CAS  Google Scholar 

  • Patel DH, Upadhyay NV, Patel MA, Dalal KC, Macwan SJ, Sriram S (2008) Effect of date of incision for gum production in guggal—Commiphora wightii Arn (Bhand). J Res Educ Indian Med 14:57–59

    Google Scholar 

  • Patil VD, Nayak UR, Dev S (1972) Chemistry of ayurvedic crude drugs I. Guggulu (Resin from Commiphora mukul-I: steroidal constituents. Tetrahedron 28:2341–2352

    Article  CAS  Google Scholar 

  • Patil VD, Nayak UR, Dev S (1973) Chemistry of Ayurvedic crude drugs III. Guggulu: long chain aliphatic tetrols, a new class of naturally occurring, lipids. Tetrahedron 29:1595–1598

    Article  CAS  Google Scholar 

  • Phale P, Subramani J, Bhatt PN, Mehta AR (1989) Viability and guggul steroid production in immobilized tissue culture cells of Commiphora wightii. Indian J Exp Biol 27:338–340

    CAS  Google Scholar 

  • Pradhan SK, Dash NC (2011) Standardization of Vatari Guggulu- an ayurvedic polyherbal formulation. Int J Pharma World Res 2:1–13

    Google Scholar 

  • Prakash J, Kasera P, Chawan DD (2000) A report on polyembryony in Commiphora wightii from Thar desert, India. Curr Sci 78:1185–1187

    Google Scholar 

  • Prasad RS, Sukh Dev (1976) Chemistry of ayurvedic crude drugs: guggulu-4, absolute stereochemistry of Mukul. Tetrahedron 32:1437–1441

    Article  CAS  Google Scholar 

  • Provan GJ, Waterman PG (1988) Major triterpenes from the resins of Commiphora incisa and C. kua and their potential chemotaxonomic significance. Phytochem 27:3841–3843

    Article  CAS  Google Scholar 

  • Provan GJ, Gray AI, Waterman PG (1992) Mansumbinane derivatives from stem bark of Commiphora kua. Phytochem 31:2065–2068

    Article  CAS  Google Scholar 

  • Purushothaman KK, Chandrasekharan S (1976) Guggul sterols from Commiphora mukul (Burseraceae). Indian J Chem 11:802–804

    Google Scholar 

  • Rahman A, Chaoudhary MI, Shaheen F, Asraf M, Jahan S (1998) Microbial transformations of Hypolipemic E-Guggulsterone. J Nat Prod 61:428–431

    Article  Google Scholar 

  • Ramawat KG, Mathur M (2007) Factors affecting production of secondary metabolites. In Ramawat KG, Merillon JM (eds) Biotechnology of secondary metabolites. Science, Enfield, pp 59–101

  • Ramawat KG, Mathur M, Dass S, Suthar S (2008) Guggulsterone: a potent natural hypolipidemic agent from Commiphora wightii- problems, preservence, and prospects. In: Ramawat KG, Merillon JM (eds) Bioactive molecules and medicinal plants. Heidelberg, Springer, pp 101–121

  • Rao RM, Khan ZA, Shah AH (2001) Toxicity studies in mice of Commiphora molmol oleo-gum resin. J Ethnopharamacol 76:151–154

    Article  CAS  Google Scholar 

  • Samantaray S, Geetha KA, Hidayath KP, Satyabrata M (2009) Identification of RAPD markers linked to sex determination in guggul [Commiphora wightii (Arn)] Bhandari. Plant Biotechnol Rep 4:95–99

    Article  Google Scholar 

  • Samantaray S, Bishoyi A, Geetha KA, Satyabrata M (2011) Assessment of genetic diversity using RAPD and ISSR markers in guggul (Commiphora wightii) epubs.icar.org.in/ejournal/index.php/JMAP/article/download/4390/1725

  • Samudio I, Konopleva M, Safe S, McQueen T, Andreeff M (2005) Guggulsterones induce apoptosis and differentiation in acute myeloid leukemia: identification of isomer-specific antileukemic activities of the pregnadienedione structure. Mol Cancer Ther 4:1982–1992

    Article  PubMed  CAS  Google Scholar 

  • Sangwan NS, Farooqi AHA, Fatima S, Sangwan RS (2001) Regulation of essential oil production in plants. Plant Growth Regul 34:3–21

    Article  CAS  Google Scholar 

  • Sarkhel S, Yadava U, Prakas P, Jain GK, Singh A, Maulik PR (2001) Guggulsterone E, a lipid-lowering agent from Commiphora mukul. Acta Crystallogr 57:285–286

    Google Scholar 

  • Satyavati GV, Dwarakanath C, Tripath SN (1969) Experimental studies on the hypocholesterolemic effect of Commiphora mukul Engl. (Guggul). Indian J Med Res 57:1950–1962

    PubMed  CAS  Google Scholar 

  • Schmeer K, Nicholson G, Zhang S, Bayer E, Bohning-Gaese K (1996) Identification of the lipids and the ant attractant 1,2-dioleoylglycerol in the arils of Commiphora guillaumini Perr. (Burseraceae) by supercritical fluid chromatography—atmospheric pressure chemical ionization mass spectrometry. J Chromatogr 727:139–146

    Article  CAS  Google Scholar 

  • Sharma ML, Gour HN (1987) A new leaf spot of Commiphora wightii a medical plant caused by Phoma sp. Curr Sci 56:538–539

    Google Scholar 

  • Sharma R, Suri SS, Ramawat KG, Sonie KC (1998) Biotechnological approaches to the medicinal plants of Arawali Hills with special reference to Commiphora wightii. In: Khan IA, Khanum A (eds) Role of biotechnology in medicinal and aromatic plants. Ukaaz, Hyderabad, pp 1–140

    Google Scholar 

  • Sharma B, Salunke R, Srivastava S, Majumder C, Roy P (2009) Effects of guggulsterone isolated from Commiphora mukul in high fat diet induced diabetic rats. Food Chem Toxicol 47:2631–2639

    Article  PubMed  CAS  Google Scholar 

  • Shishodia S, Aggarwal BB (2004) Guggulsterone inhibits NF-kappa-B and I-kappa-B-alpha-Kinase activation, suppresses expression of anti-apoptotic gene products, and enhances apoptosis. J Biol Chem 279:47148–47158

    Article  PubMed  CAS  Google Scholar 

  • Shishodia S, Sethi G, Ahn K, Aggarwal BB (2007) Guggulsterone inhibits tumor cell proliferation, induces S-phase arrest, and promotes apoptosis through activation of c-Jun N-terminal kinase, suppression of AKT pathway, and downregulation of antiapoptotic gene products. Biochem Pharmacol 74:118–130

    Article  PubMed  CAS  Google Scholar 

  • Shishodia S, Kuzhuvelil B, Harikumar DS, Ramawat KG, Aggarwal BB (2008) The Guggul for chronic diseases: ancient medicine, modern targets. Anticancer Res 28:3647–3664

    PubMed  CAS  Google Scholar 

  • Siddiqui ZM (2011) Guggul: an excellent herbal panacea. Asian J Pharma Health Sci 1:35–39

    Google Scholar 

  • Singh V, Kaul S, Chander R, Kapoor NK (1990) Stimulation of low density lipoprotein receptor activity in liver membrane of guggulsterone treated rats. Pharmalogical Res 22:37–44

    Article  CAS  Google Scholar 

  • Singh RB, Niaz MA, Ghosh S (1994) Hypolipidemic and antioxidant effects of Commiphora mukul as an adjunct to dietary therapy in patients with hypercholesterolemia. Cardiovasc Drugs Ther 8:659–664

    Article  PubMed  CAS  Google Scholar 

  • Singh SK, Verma N, Gupta RC (1995) Sensitive high-performance liquid chromatographic assay method for the determination of guggulsterone in serum. J Chromatogr Biomed Appl 670:173–176

    Article  CAS  Google Scholar 

  • Singh AK, Suri SS, Ramawat KG (1997) Somatic embryogenesis from immature zygotic embryos of Commiphora wightii, a woody medicinal plant. Gartenbauwissenschaft 62:44–48

    Google Scholar 

  • Singh B, Prasad S, Vinjamury KE, Mishra C, Lakshmi SN, Singh V, Meier M, Gandhi M (2007) Ayurvedic and collateral herbal treatments for hyperlipidemia: a systematic review of randomized controlled trials and quasi experimental designs. Altern Ther Health Med 13:22–28

    PubMed  Google Scholar 

  • Singh N, Garg A, Yadav K, Kumari S (2010) Influence of growth regulators on the explants of Commiphora mukul (Hook. ex Stocks) Engl. under in vitro conditions. Researcher 2:41–48

    Google Scholar 

  • Sobti SN, Singh SD (1961) A chromosome survey of Indian medical plants: Part-1. Proc Indian Acad Sci 3:138–144

    Google Scholar 

  • Soni V (2010a) Efficacy of in vitro tissue culture versus stem cuttings for propagation of Commiphora wightii in Rajasthan, India. Conserv Evidence 7:91–93

    Google Scholar 

  • Soni V (2010b) Conservation of Commiphora wightii, an endangered medicinal shrub, through propagation and planting, and education awareness programs in the Aravali Hills of Rajasthan, India. Conserv Evidence 7:27–31

    Google Scholar 

  • Soni V, Sawarnkar PL, Tyagi V, Pareek LK (2009) Varaiation in E- and Z-guggulsterone of Commiphora wightii. South African J Bot. doi:10.1016/J.SBJB.2009.10.004

  • Srivastava M, Nityanand S, Kapoor N (1984) Effect of hypocholesterolemic agents of plant origin on catecholamine biosynthesis in normal and cholesterol fed rabbits. J Biosci 6:277–282

    Article  CAS  Google Scholar 

  • Suri SS, Ramawat KG (1996) Effect of Calotropis latex on laticifers differentiation in callus cultures of Calotropis procera. Biol Plant 38:185–190

    Article  CAS  Google Scholar 

  • Suthar S, Ramawat KG (2010) Growth retardants stimulate guggulsterone production in the presence of fungal elicitor in fed-batch cultures of Commiphora wightii. Plant Biotechnol Rep 4:9–13

    Article  Google Scholar 

  • Suthar S, Thul S, Kukreja AK, Ramawat KG (2008) RAPD markers reveal polymorphism in Commiphora wightii, an endangered medicinal tree. J Cell Tissue Res 8:1477–1480

    CAS  Google Scholar 

  • Swanepoel W (2011) Commiphora buruxa (Burseraceae), a new species from Southern Namibia. South African J Bot 77:608–612

    Article  Google Scholar 

  • Tanwar YS, Mathur M, Ramawat KG (2007) Morphactin influence guggulsterone production in callus cultures of Commiphora wightii. Plant Growth Regul 51:93–98

    Article  CAS  Google Scholar 

  • Thappa DM, Dogra J (1994) Nodulocystic acne: oral guggulipid versus tetracycline. J Dermatol 21:729–731

    PubMed  CAS  Google Scholar 

  • Thomas AF (1961) The triterpenes of Commiphora—II. The structure of comic acid C and comic acid D. Tetrahedron 15:212–216

    Article  CAS  Google Scholar 

  • Tripathi YB, Malhotra OP, Tripathi SN (1984) Thyroid stimulation action of Z-Guggulsterone obtained from Commiphora mukul. Planta Med 50:78–80

    Article  CAS  Google Scholar 

  • Ulbright C, Basch E, Szapary P, Hammerness P, Axentsev S, Boon H, Kroll D, Garraway L, Vora M, Woods J (2005) Guggul for hyperlipidemia: a review by the natural standard research collaboration. Complement Ther Med 13:279–290

    Article  Google Scholar 

  • Urizar NL, Moore DD (2003) Gugulipid: a natural cholesterol lowering agent. Annul Rev Nutrition 23:303–313

    Article  CAS  Google Scholar 

  • Urizar NL, Liverman AB, Dodds DT, Silva FV, Ordentlich P (2002) A natural product that lowers cholesterol as an antagonist ligand for FXR. Science 269:1703–1706

    Article  Google Scholar 

  • Van Wyk BE, Wink M (2004) Medicinal plants of the world. Briza Publications, South Africa

    Google Scholar 

  • Verma SK, Bordia A (1988) Effect of Commiphora mukul (gum gulggulu) in patients of hyperlipidemia with special reference to HDL-cholesterol. Indian J Med Res 87:356–360

    PubMed  CAS  Google Scholar 

  • Verma N, Singh SK, Gupta RC (1998) Simultaneous determination of the stereoisomers of guggulsterone in serum by high-performance liquid chromatography. J Chromatogr 708:243–248

    Article  CAS  Google Scholar 

  • Verma S, Jain A, Gupta VB (2010) Synergistic and sustained anti-inflammatory activity of guggul with the Ibuprofen: a preliminery study. Int J Pharma Biol Sci 1:1–7

    Google Scholar 

  • Waterman PG, Ampofo S (1985) Dammarane triterpenes from the stem bark of Commiphora dalzielii. Phytochem 24:2925–2928

    Article  CAS  Google Scholar 

  • Weeks A, Simpson BB (2005) The phylogenetic history and biogeography of the frankincense and myrrh family (Burseraceae) based on nuclear and chloroplast sequence data. Mol Phylogenet Evol 35:85–101

    Article  PubMed  CAS  Google Scholar 

  • Weeks A, Simpson BB (2007) Molecular phylogenetic analysis of Commiphora (Burseraceae) yields insight on the evolution and historical biogeography of an “impossible” genus. Mol Phylogenet Evol 42:62–79

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Xia C, Meier J, Li S, Lala HuX (2002) The hypolipidmic natural product guggulsterone acts as an antagonist of bile acid receptor. Mol Endocrinol 1:1590–1597

    Article  Google Scholar 

  • Xiao D, Singh S (2007) Z-Guggulsterone, a constituent of Ayurvedic medicinal plant Commiphora mukul, inhibits angiogenesis in vitro and in vivo. Mol Cancer Ther 7:171–180

    Article  Google Scholar 

  • Yadav BBL, Billore KV, Joseph JG, Chaturvedy DD (1999) Cultivation of GUGGULU. Central Council for Research in Ayurveda and Siddha, New Delhi. India, pp 1–87

  • Yang YJ, Della AM, Baile AC (2008) Guggulsterone inhibits adipocyte differentiation and induces apoptosis in 3T3-L1 Cells. Obesity 16:16–22

    Article  PubMed  CAS  Google Scholar 

  • Yusuf A, Rathore TS, Shekhawat NS (1999) Micropropagation of Commiphora wightii (Arn.) Bhandari—A threatened medicinal plant of semi-arid region. Indian J Plant Genet Res 12:371–375

    Google Scholar 

  • Zhu N, Rafi M, Dipaola SR (2001) Bioactive constituents from gum guggul (Commiphora wightii) J. Phytochem 56:723–727

    Article  CAS  Google Scholar 

Download references

Acknowledgments

AK thankfully acknowledges the financial assistance provided by Department of Biotechnology, Government of India, New Delhi, under the project sanctioned vide order no. BT/PR10526/NDB/51/164/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajwant K. Kalia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulhari, A., Sheorayan, A., Kalia, S. et al. Problems, progress and future prospects of improvement of Commiphora wightii (Arn.) Bhandari, an endangered herbal magic, through modern biotechnological tools: a review. Genet Resour Crop Evol 59, 1223–1254 (2012). https://doi.org/10.1007/s10722-012-9854-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-012-9854-2

Keywords

Navigation