, Volume 57, Issue 4, pp 611-618
Date: 02 Dec 2009

Recombination around the P locus for long glume phenotype in experimental introgression lines of Triticum aestivumTriticum polonicum

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

A set of experimental introgression lines of Triticum aestivum L. cv. Novosibirskaya 67 (N67)—Triticum polonicum L. line IC 12196 was developed using a small-scale bulk breeding method. The linkage map in chromosome 7A was constructed using F2 hybrids of N67/IC12196 and 34 microsatellite markers. The P gene was flanked by the centromeric markers, Xgwm890 (18.6 cM) and Xbarc108 (20.0 cM) on the long arm of chromosome 7A. Among 124 introgression lines, 118 lines were hexaploid (2n = 6x = 42), and 6 were tetraploid (2n = 4x = 28). Among hexaploid accessions, 68 were long-glumed, whereas 50 were normal-glumed. Thirty-four polymorphic microsatellite markers were scored for either the N67 alleles or IC 12196 alleles in 124 introgression lines derived from N67/IC 12196. The UPGMA dendrogram showed five clusters; Cluster 1 mainly contained hexaploid introgression lines with long glumes. Although the alleles around the P locus were recombined with IC1296 alleles, the distal end of the chromosome contained N67 alleles. Cluster 2 mainly contained normal glumed, hexaploid introgression lines. These predominantly had the N67 alleles on the long arm of chromosome 7A and the short arm proximal to the centromere. Cluster 3 contained long-glumed, hexaploid wheat lines with relatively high level of recombination. Cluster 4 contained non-parental alleles. Cluster 5 contained the group of tetraploid wheat lines. These tetraploid lines have IC12196 alleles on both arms of chromosome 7A. The frequency spectrum of parental alleles and chromosomal blocks among introgression lines suggested that T. aestivum – T. polonicum hybridization can rapidly give rise to a new landrace due to selective introgression of the P gene.