Skip to main content
Log in

Stress Relaxation in Mullite – ZrO2 Ceramic at High Temperatures

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

Data obtained in an investigation of stress relaxation in high-temperature bending of samples of mullite-based ceramic modified by zirconium oxide are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. E. N. Kablov, “Strategic directions of development of materials and technologies for processing these materials in the period up to 2030,” Aviats. Mater. Tekhnol., No. S, 7 – 17 (2012).

  2. V. G. Maksimov, O. V. Basargin, and V. Yu. Nikitina, “On the manifestation of superplasticity in polydisperse ceramic mullite – zirconium oxide with crystal sizes greater than 10 μm,” Trudy VIAM, No. 6, Art. 04 (2013); viam-works.ru.

  3. B. V. Shchetanov, Yu. A. Ivakhnenko, and V. G. Babshov, “Heat-shielding materials,” Ross. Khim. Zh., 54(1), 12 – 20 (2010).

    Google Scholar 

  4. B. V. Shchetanov, “Plate material for exterior high-temperature heat-shielding coating for the shuttle Buran,” Aviats. Mater. Tekhnol., No. S1, 41 – 50 (2013).

  5. A. P. Garshin, V. M. Gropyanov, G. P. Zaitsev, et al., Ceramics for Machine Engineering [in Russian], Nauchlegtekhizdat, Moscow (2003).

    Google Scholar 

  6. E. N. Kablov, D. V. Grashchenkov, N. V. Isaeva, and S. S. Solntsev, “Advanced high-temperature ceramic composite materials,” Ross. Khim. Zh., 54(1), 20 – 24 (2010).

    Google Scholar 

  7. E. N. Kablov, B. V. Shchetanov, Yu. A. Ivakhnenko, and Yu. A. Balinova, “Advanced reinforcing high-temperature fibers for metallic and ceramic composite materials,” Trudy VIAM, No. 2, Art. 05 (2013); viam-works.ru.

  8. F. E. Heredia, J. C. McNulty, F. W. Zok, and A. G. Evans, “Oxidation embrittlement probe for ceramic-matrix composites,” J. Am. Ceram. Soc., 78(8), 2097 – 2100 (1995).

    Article  Google Scholar 

  9. R. Krishnamurthy, J. Rankin, and B.W. Sheldon, “Effect of oxidation on crack deflection in SiC/Al2O3 laminated ceramic composites,” J. Am. Ceram. Soc., 88(5), 1362 – 1365 (2005).

    Article  Google Scholar 

  10. Working Scenario: Columbia Accident Investigation Board (CAIB)/NASA Accident Investigation Team (NAIT), July 8 (2003).

  11. I. N. Ermolenko, T. M. Ul’yanova, P. A. Vityaz’, and I. L. Fedorova, Fibrous High-Temperature Ceramic Materials [in Russian], Navuka i Tekhnika, Minsk (1991).

  12. E. V. Tinyakov and D. V. Grashchenkov, “Heat-insulation material based on mullite-corundum and quartz fibers,” Aviats. Mater. Tekhnol., No. 3, 43 – 46 (2012).

  13. Yu. A. Ivakhnenko, V. G. Babashov, A. M. Zimichev, and E. V. Tinyakova, “High-temperature heat-insulation materials based on refractory compounds,” Aviats. Mater. Tekhnol., No. S, 380 – 386 (2012).

  14. V. G. Sevast’yanov, E. P. Simonenko, N. P. Simonenko, and N. T. Kuznetsov, “Synthesis of high-dispersity refractory zirconium-hafnium-yttrium oxide using the sol-gel technology,” Zh. Neorg. Khim., 57(3), 355 – 361 (2012).

    Google Scholar 

  15. R. A. Andrievskii, “Properties of nanocrystalline refractory compounds: review,” Poroshk. Metall., No. 11 – 12, 85 – 87 (1993).

  16. A. N. Ershov, Development of the Scientific Principles for the Pressure Treatment of Ceramic Materials in a State of Superplasticity, Author’s Abstract of Doctoral’s Thesis [in Russian], Moscow (2001).

  17. O. V. Basargin, T. M. Shcheglova, S. G. Kolyshev, et al., “Determination of the high-temperature strength of ceramic oxide materials,” Steklo Keram., No. 2, 6 – 9 (2013); O. V. Basargin, T. M. Shcheglova, S. G. Kolyshev, et al., “Determination of the high-temperature strength of ceramic oxide materials,” Glass Ceram., 70(1 – 2), 43 – 46 (2013).

  18. V. G. Maksimov, D. V. Grashchenkov, V. A. Lomovskoi, et al., “Investigation of high-temperature creep in mullite – zirconium oxide polydisperse ceramic,” Steklo Keram., No. 5, 36 – 40 (2014); V. G. Maksimov, D. V. Grashchenkov, V. A. Lomovskoi, et al., “Investigation of high-temperature creep in mullite – zirconium oxide polydisperse ceramic,” Glass Ceram., 71(5 – 6), 175 – 179 (2014).

  19. N. A. Toropov, V. P. Barzakovskii, V. V. Lapin, et al., Handbook of Phase Diagrams of the States of Silicate Systems [in Russian], Nauka, Leningrad (1972), Vol. 3.

  20. Yu. R. Kolobov, R. Z. Valiev, G. P. Grabovetskaya, et al., Grain- Boundary Diffusion and Properties of Nanostructural Materials [in Russian], Nauka, Novosibirsk (2001), pp. 184 – 194.

    Google Scholar 

  21. S. T. Mileiko, A. V. Serebryakov, V. M. Kiiko, et al., “Singlecrystal mullite fibers obtained by internal crystallization,” Kompozity i Nanostruktury, No. 2, 47 – 60 (2009).

Download references

The RFFI provided financial support for this research as part of the scientific project No. 13-08-12110-ofi_m.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. G. Maksimov or V. G. Babashov.

Additional information

Translated from Steklo i Keramika, No. 6, pp. 12 – 14, June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimov, V.G., Grashchenkov, D.V., Babashov, V.G. et al. Stress Relaxation in Mullite – ZrO2 Ceramic at High Temperatures. Glass Ceram 73, 210–212 (2016). https://doi.org/10.1007/s10717-016-9858-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-016-9858-z

Key words

Navigation