Skip to main content
Log in

Ricci time in the Lemaître–Tolman model and the block universe

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

It is common to think of our universe according to the “block universe” concept, which says that spacetime consists of many “stacked” three-surfaces, labelled by some kind of proper time, \(\tau \). Standard ideas do not distinguish past and future, but Ellis’ “evolving block universe” tries to make a fundamental distinction. One proposal for this proper time is the proper time measured along the timelike Ricci eigenlines, starting from the big bang. This work investigates the shape of the “Ricci time” surfaces relative to the the null surfaces. We use the Lemaître–Tolman metric as our inhomogeneous spacetime model, and we find the necessary and sufficient conditions for these \(\{\tau = \) constant\(\}\) surfaces, \(S(\tau )\), to be spacelike or timelike. Furthermore, we look at the effect of strong gravity domains by determining the location of timelike S regions relative to apparent horizons. We find that constant Ricci time surfaces are always spacelike near the big bang, while at late times (near the crunch or the extreme far future), they are only timelike under special circumstances. At intermediate times, timelike S regions are common unless the variation of the bang time is restricted. The regions where these surfaces become timelike are often adjacent to apparent horizons, but always outside them, and in particular timelike S regions do not occur inside the horizons of black-hole-like models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Equation (26) follows from \(R_{ab} = (T_{ab} - (1/2) T g_{ab}) \rightarrow \lambda _2 = \lambda _1 - (1/2) T\).

  2. We only need the ratio of absolute values, since the slopes of the incoming and outgoing light rays (31) have the same magnitude. It is convenient to put the simpler expression in the denominator.

  3. Several other plots, such as \(\mathscr {R}\) against t and R, are plotted but not used here.

  4. In fact, all the “black holes” we know about, such as at the centres of galaxies, are immersed in a CMB background and usually have accretion discs too, which means they are non-vacuum and thus do not have Shwarzschild or Kerr metrics. Nevertheless, non-vacuum black holes in LT have the same topology as the Shwarzschild-Kruskal-Szekeres manifold, i.e. two asymptotic regions joined by a neck, and they have a similar causal structure, though the horizons are dynamic rather than static (“isolated”). Other differences are more quantitative than qualitative.

  5. It is suggested that inflation will enormously reduce any bang time variations. However, after recombination, when LT models become reasonable models of near-spherical structures, the LT description will have an effective bang time variation, needed to best describe the matter evolution. This is because the evolution before recombination was controlled by a different equation of state, so the matching into a subsequent LT model will in general use all of the LT arbitrary functions. We don’t need to claim that the LT model is valid before recombination, but this effective bang time function still affects the Ricci-time calculations.

References

  1. Rovelli, C.: Found. Phys. 41(9), 1475 (2011). arXiv:0903.3832

  2. Barbour, J.: The End of Time: The Next Revolution in Phyiscs. Oxford University Press, Oxford (1999)

    Google Scholar 

  3. Davies, P.C.W.: Scientific American Special Edition: A Matter of Time 21, 8 (2012). http://www.scientificamerican.com/article/that-mysterious-flow-2012-01/

  4. Price, H.: Time’s Arrow and Archimedes’ Point. Oxford University Press, Oxford (1997)

    Book  Google Scholar 

  5. Ellis, G.F.R., Goswami, R.: In: Ashtekar, A., Petkov, V. (eds.) Springer Handbook of Spacetime, (Springer, 2014), pp. 243–264. arXiv:1208.2611

  6. Lemaître, G.: Ann. de la Société Sci. de Bruxelles A53, 51 (1933)

    ADS  Google Scholar 

  7. Tolman, R.C.: Natl. Acad. Sci. USA 20, 169 (1934)

    Article  ADS  Google Scholar 

  8. Bondi, H.: Mon. Not. R. Astron. Soc. 107, 410 (1947)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Hellaby, C.: Mon. Not. R. Astron. Soc. 370, 239 (2006). arXiv:astro-ph/0603637

  10. Hellaby, C., Alfedeel, A.H.A.: Phys. Rev. D 79, 043501 (2009). arXiv:0811.1676

  11. Bolejko, K., Krasiński, A., Hellaby, C.: Mon. Not. R. Astron. Soc. 362, 213 (2005). arXiv:gr-qc/0411126

  12. Alnes, H., Amarzguioui, M., Grøn, Ø.: Phys. Rev. D 73(8), 083519 (2006). arXiv:astro-ph/0512006

  13. Sussman, R.A.: Class. Quantum Gravity 25, 015012 (2007). http://iopscience.iop.org/0264-9381/25/1/015012

  14. Hellaby, C.: Class. Quantum Gravity 4, 635 (1987). http://iopscience.iop.org/0264-9381/4/3/021

  15. Krasiński, A., Hellaby, C.: Phys. Rev. D 69, 043502 (2004). arXiv:grqc/0309119

  16. Krasiński, A.: Inhomogeneous Cosmological Models. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  17. Plebanski, J., Krasiński, A.: An Introduction to General Relativity and Cosmology. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  18. Hellaby, C.: Proc. Sci. ISFTG, 005 (2009). arXiv:0910.0350

  19. Ellis, G.F.: J. Math. Phys. 8, 1171 (1967). http://link.aip.org/link/?JMP/8/1171/1&Agg=doi

  20. Krasiński, A., Hellaby, C.: Phys. Rev. D 65, 023501 (2001). arXiv:gr-qc/0106096

  21. Krasiński, A., Hellaby, C.: Phys. Rev. D 69, 023502 (2004). arXiv:gr-qc/0303016

  22. Hellaby, C.: Ph.D. thesis, Queens University at Kinston, Ontario (1985). http://www.mth.uct.ac.za/~cwh/CWH_PhD.pdf

  23. Hellaby, C., Lake, K.: Astrophys. J. 290, 381 (1985). http://adsabs.harvard.edu/full/1985ApJ...290..381H

  24. Joshi, P.S.: Global Aspects in Gravitation and Cosmology. Clarendon Press, Oxford (1993)

    MATH  Google Scholar 

  25. Waugh, B., Lake, K.: Phys. Rev. D 40, 2137 (1989). https://journals.aps.org/prd/abstract/10.1103/PhysRevD.40.2137

  26. Newman, R.P.A.C.: Class. Quantum Gravity 3, 527 (1986). http://iopscience.iop.org/0264-9381/3/4/007

  27. Eardley, D.M., Smarr, L.: Phys. Rev. D 19, 2239 (1979). http://journals.aps.org/prd/abstract/10.1103/PhysRevD.19.2239

  28. Christodoulou, D.: Commun. Math. Phys. 93, 171 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  29. Bonnor, W.B.: Class. Quantum Gravity 2, 781 (1985). http://iopscience.iop.org/0264-9381/2/5/018

  30. Hellaby, C.: J. Math. Phys. 37, 2892 (1996). http://scitation.aip.org/content/aip/journal/jmp/37/6/10.1063/1.531545

  31. Lemos, J.P.S.: Phys. Rev. Lett. 68, 1447 (1992). http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.68.1447

  32. Hellaby, C.: Phys. Rev. D 49, 6484 (1994). arXiv:gr-qc/9907074

  33. Butterfield, J.N.: (2001). arXiv:gr-qc/0103055

  34. (2014). http://www.fqxi.org/community/forum/category/10

  35. Mellor, D.H.: Real Time II. Routledge, London (1998)

    Book  Google Scholar 

  36. Ellis, G.F.R.: Gen. Relativ. Gravit. 38(12), 1797 (2006). arXiv:gr-qc/0605049

  37. Ellis, G.F.R., Rothman, T.: Int. J. Theor. Phys. 49(5), 988 (2010). arXiv:0912.0808

  38. Silk, J.: Astron. Astrophys. 59, 53 (1977). http://adsabs.harvard.edu/full/1977A&A....59...53S

  39. Sussman, R.A.: Class. Quantum Gravity 30, 235001 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  40. Sussman, R.A.: Gen. Relativ. Gravit. 42, 2813 (2010). arXiv:1002.0173

  41. Sussman, R.A., Larena, J.: Class. Quantum Gravity 31, 075021 (2014). arXiv:1310.7632

  42. Clifton, T., Ellis, G.F., Tavakol, R.: Class. Quantum Gravity 30, 125009 (2013). arXiv:1303.5612

  43. Hosoya, A., Buchert, T., Morita, M.: Phys. Rev. Lett. 92, 141302 (2004). arXiv:gr-qc/0402076

  44. Sussman, R.A.: Class. Quantum Gravity 30, 065015 (2013). arXiv:1209.1962

  45. Bolejko, K., Stoeger, W.R.: Phys. Rev. D 88, 063529 (2013). arXiv:1309.5695

Download references

Acknowledgments

YE thanks South Africa’s National Astrophysics and Space Science Programme (NASSP) for a bursary. CH and GFRE wish to thank South Africa’s National Research Foundation (NRF) and the University of Cape Town Research Committee (URC) for funding awards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser Elmahalawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmahalawy, Y., Hellaby, C. & Ellis, G.F.R. Ricci time in the Lemaître–Tolman model and the block universe. Gen Relativ Gravit 47, 113 (2015). https://doi.org/10.1007/s10714-015-1950-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-1950-0

Keywords

Navigation