Skip to main content
Log in

Last gasp of a black hole: unitary evaporation implies non-monotonic mass loss

  • Editor's Choice (Research Article)
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We show within the usual two-dimensional approximation that unitarity and the restoration of Minkowski vacuum correlations at the end of black hole evaporation impose unexpected constraints on its mass loss rate: before disappearing the black hole emits one or more negative energy burst, leading to a temporary increase of its mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. It is immediate to estimate the size of the core of a black-hole-like object with the singularity resolved at a Planck-scale energy density: if we concentrate all the mass \(M\) of the black hole in a core of size \(\ell \) we find a density \(\varrho \sim M/\ell ^3\). A Planck scale upper bound \(\varrho \sim \hbar ^{-1}\) results in a core of size \(\ell \sim (M\,\hbar )^{1/3}\). For a solar mass black hole this size is \(10^{12}\) times larger that the Planck length \(\ell _P=\hbar ^{\,1/2}\) and can be described by a classical effective metric.

  2. We partially fix the ambiguity in the choice of the affine parameter \(u\) by demanding that the future-pointing null vectors \(l=\partial _v\) and \(n=\partial _u\) have scalar product \(l\cdot n=-1\) at spatial infinity.

  3. In terms of the ray-tracing function this condition corresponds to \(\dot{p}(u)\rightarrow 1\) smoothly as \(u\rightarrow \pm \infty \), i.e. no redshift or blueshift at initial and late times.

References

  1. Hawking, S.W.: Particle Creation by Black Holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  2. Hawking, S.W.: Black hole explosions. Nature 248, 30–31 (1974)

    Article  ADS  Google Scholar 

  3. Hawking, S.W.: Breakdown of Predictability in Gravitational Collapse. Phys. Rev. D14, 2460–2473 (1976)

    MathSciNet  ADS  Google Scholar 

  4. Ashtekar, A., Bojowald, M.: Black hole evaporation: A Paradigm. Class. Quant. Grav. 22, 3349 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Hayward, S.: Formation and Evaporation of Nonsingular Black Holes. Phys. Rev. Lett. 96, 031103 (2006)

    Article  ADS  Google Scholar 

  6. Rovelli, C., Vidotto,F.: “Planck stars”, arXiv (2014) http://arXiv.org/abs/1401.6562v4

  7. Frolov, V.P.: “Information loss problem and a ’black hole‘ model with a closed apparent horizon”, JHEP 1405 (2014) 049, http://arXiv.org/abs/1402.5446v2

  8. Barcelo, C., Liberati, S., Sonego, S., Visser, M.: Minimal conditions for the existence of a Hawking-like flux. Phys. Rev. D 83, 041501 (2011)

    Article  ADS  Google Scholar 

  9. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, (1982)

  10. Walker, W.R.: Particle and Energy Creation by Moving Mirrors. Phys. Rev. D 31, 767 (1985)

    Article  ADS  Google Scholar 

  11. Ashtekar, A., Taveras, V., Varadarajan, M.: Information is Not Lost in the Evaporation of 2-dimensional Black Holes. Phys. Rev. Lett. 100, 211302 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  12. Bombelli, L., Koul, R.K., Lee, J., Sorkin, R.D.: A Quantum Source of Entropy for Black Holes. Phys. Rev. D34, 373–383 (1986)

    MathSciNet  ADS  Google Scholar 

  13. Holzhey, C., Larsen, F., Wilczek, F.: Geometric and renormalized entropy in conformal field theory. Nucl. Phys. B 424(3), 443–467 (1994)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Bianchi, E., Smerlak, M.: Entanglement entropy and negative energy in two dimensions. Phys. Rev. D 90(4), 041904 (2014)

  15. Bianchi, E., Smerlak, M.: “Entanglement entropy production in gravitational collapse: covariant regularization and solvable examples”, in preparation.

  16. Page, D.: Information in black hole radiation. Phys. Rev. Lett. 71, 3743–3746 (1993)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Acknowledgments

We thank Abhay Ashtekar and Ted Jacobson for useful discussions on energy and unitarity in black hole evaporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Smerlak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianchi, E., Smerlak, M. Last gasp of a black hole: unitary evaporation implies non-monotonic mass loss. Gen Relativ Gravit 46, 1809 (2014). https://doi.org/10.1007/s10714-014-1809-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1809-9

Keywords

Navigation