Skip to main content
Log in

On the Bondi mass of Maxwell–Klein–Gordon spacetimes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper we calculate the Bondi mass of asymptotically flat spacetimes with interacting electromagnetic and scalar fields. The system of coupled Einstein–Maxwell–Klein–Gordon equations is investigated and corresponding field equations are written in the spinor form and in the Newman–Penrose formalism. Asymptotically flat solution of the resulting system is found near null infinity. Finally we use the asymptotic twistor equation to find the Bondi mass of the spacetime and derive the Bondi mass-loss formula. We compare the results with our previous work (Bičák et al. in Class Quantum Gravity 27(17):175011, 2010) and show that, unlike the conformal scalar field, the (Maxwell–)Klein–Gordon field has negatively semi-definite mass-loss formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In order to calculate the Bondi mass, the analyticity is not necessary and weaker assumptions on the differentiability of the solution could be imposed. In what follows we use the analyticity to argue that the mass of the Klein–Gordon field must be zero.

  2. This depends on the conventions used. What is convention-independent is the behaviour of the Weyl tensor \(C_{abcd}=\varPsi _{ABCD}\varepsilon _{A'B'}\varepsilon _{C'D'}\). In the non-abstract index formalism, components of tensors are related to components of spinors via van der Waerden symbols \(\sigma _a^{AA'}\) which can have a conformal weight and thus they affect the conformal weight of \(\varPsi _{ABCD}\), as in, e.g. [22].

  3. By the Newman–Penrose quantities we mean five components \(\varPsi _m,\,m=0,\dots 4\), six independent components \(\varPhi _{mn},\,m,n=0,1,2\), twelve spin coefficients, three electromagnetic components \(\phi _m,\,m=0,1,2\), four components of the potential \(A_m,\,m=0,1,\overline{1},2\), and the scalar field \(\phi \).

References

  1. Bičák, J., Scholtz, M., Tod, P.: On asymptotically flat solutions of Einstein’s equations periodic in time: II. Spacetimes with scalar-field sources. Class. Quantum Gravity 27(17), 175011 (2010). doi:10.1088/0264-9381/27/17/175011

    Article  ADS  Google Scholar 

  2. Penrose, R.: Quasi-local mass and angular momentum in general relativity. R Soc Lond Proc. Ser. A 381, 53–63 (1982). doi:10.1098/rspa.1982.0058

    Article  ADS  MathSciNet  Google Scholar 

  3. Hawking, S.W.: Gravitational radiation in an expanding universe. J. Math. Phys. 9(4), 598–604 (1968)

    Article  ADS  Google Scholar 

  4. Dougan, A.J., Mason, L.J.: Quasilocal mass constructions with positive energy. Phys. Rev. Lett. 67, 2119–2122 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Brown, J.D., York Jr, J.W.: Quasilocal energy and conserved charges derived from the gravitational action. Phys. Rev. D 47, 1407–1419 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  6. Szabados, L.B.: Quasi-local energy-momentum and angular momentum in GR: a review article. Living Rev. Relativ. 7 (2004)

  7. Jaramillo, J.L., Gourgoulhon, E.: Mass and angular momentum in general relativity. In: Blanchet, L., pallicci, A., Whiting, B. (eds.) Mass and Motion in General Relativity. Springer, Berlin (2011)

    Google Scholar 

  8. Arnowitt, R., Deser, S., Misner, C.W.: Republication of: the dynamics of general relativity. Gen. Relativ. Gravit. 40, 1997–2027 (2008)

    Article  ADS  MATH  Google Scholar 

  9. Bondi, H., van der Burg, M.G.J., Metzner, A.W.K.: Gravitational waves in general relativity. VII. Waves from axi-symmetric isolated systems. R Soc. Lond. Proc. Ser. A 269, 21–52 (1962)

    Article  ADS  MATH  Google Scholar 

  10. Geroch, R., Held, A., Penrose, R.: A space-time calculus based on pairs of null directions. J. Math. Phys. 14, 874–881 (1973)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Chrusciel, P.T., Jezierski, J., Kijowski, J.: A Hamiltonian field theory in the radiating regime. Springer, NewYork (2002)

    Google Scholar 

  12. Huang, C.: Bondi Mass in Scalar Fields. In: The 28th International Cosmic Ray Conference in Tsukuba, pp. 3145–3148. Universal Academy Press Inc, Tokyo (2013)

  13. Tod, K.P.: Penrose’s quasi-local mass. In: Bailey, T.N., Baston, R.J. (eds.) Twistors in Mathematics and Physics. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  14. Tod, K.P.: Some examples of Penrose’s quasi-local mass construction. R. Soc. Lond. Proc. Ser. A 388, 457–477 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  15. Tod, K.P.: More on Penrose’s quasi-local mass. Class. Quantum Gravity 3, 1169–1189 (1986). doi:10.1088/0264-9381/3/6/016

  16. Gegenberg, J.D., Das, A.: An exact stationary solution of the combined Einstein–Maxwell–Klein–Gordon equations. J. Math Phys. 22, 1736–1739 (1981)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1975)

    Google Scholar 

  18. Penrose, R., Rindler, W.: Spinors and Space-Time. Vol. 1: Two-Spinor Calculus and Relativistic Fields. Cambridge University Press, Cambridge (1984)

    Book  Google Scholar 

  19. Stewart, J.: Advanced General Relativity. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  20. Bičák, J., Scholtz, M., Tod, P.: On asymptotically flat solutions of Einstein’s equations periodic in time: I. Vacuum and electrovacuum solutions. Class. Quantum Gravity 27(5), 055007 (2010). doi:10.1088/0264-9381/27/5/055007

    Article  ADS  Google Scholar 

  21. Penrose, R., Rindler, W.: Spinors and Space-Time. Volume 2: Spinor and Twistor Methods in Space-Time Geometry. Cambridge University Press, Cambridge (1986)

    Book  Google Scholar 

  22. Penrose, R.: Zero rest-mass fields including gravitation: asymptotic behaviour. R. Soc. Lond. Proc. Ser. A 284, 159–203 (1965). doi:10.1098/rspa.1965.0058

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Adamo, T.M., Kozameh, C., Newman, E.T.: Null geodesic congruences, asymptotically-flat spacetimes and their physical interpretation. Living Rev. Relativ. 12, 6 (2009)

    Article  ADS  Google Scholar 

  24. Newman, E.T., Penrose, R.: An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys. 3(3), 566–578 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  25. Winicour, J.: Massive fields at null infinity. J. Math. Phys. 29, 2117–2121 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Helfer, A.D.: Null infinity does not carry massive fields. J. Math. Phys. 34, 3478–3480 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Huggett, S.A., Tod, K.P.: An Introduction to Twistor Theory. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  28. Szabados, L.B.: Two-dimensional Sen connections in general relativity. Class. Quantum Gravity 11, 1833–1846 (1994). doi:10.1088/0264-9381/11/7/019

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Szabados, L.B.: Two-dimensional Sen connections and quasi-local energy-momentum. Class. Quantum Gravity 11, 1847–1866 (1994). doi:10.1088/0264-9381/11/7/020

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant GAUK 606412 of the Charles University of Prague, Czech Republic and the grant GAČR 202/09/0772 of the Czech science foundation. The authors acknowledge useful discussions with Paul Tod and Szabados László. In particular, we are grateful to Paul Tod for his comments on the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Scholtz.

Appendix 1: Field equations in the Newman–Penrose formalism

Appendix 1: Field equations in the Newman–Penrose formalism

Four-potential \(A_a = A_{AA'}\) is a real vector field and its components with respect to the spin basis will be denoted by

$$\begin{aligned} A_0&= A_{XX'}o^X\overline{o}^{X'},&A_1&= A_{XX'}o^X\overline{\iota }^{X'}, \end{aligned}$$
(71a)
$$\begin{aligned} A_{\overline{1}}&= A_{XX'} \iota ^X \overline{o}^{X'},&A_2&= A_{XX'}\iota ^X\overline{\iota }^{X'}. \end{aligned}$$
(71b)

Similarly we introduce the Newman–Penrose components of electromagnetic spinor \(\phi _{AB}\) by

$$\begin{aligned} \phi _0 = \phi _{AB}\,o^A\,o^B, \qquad \phi _1 = \phi _{AB}\,o^A\,\iota ^B, \qquad \phi _2 = \phi _{AB}\,\iota ^A\,\iota ^B. \end{aligned}$$
(72)

Potential \(A_a\) is governed by Eq. (8),

$$\begin{aligned} \nabla ^{A'}_A A_{BA'} = -\,\phi _{AB}. \end{aligned}$$

Projections of this equation onto the spin basis are

$$\begin{aligned} DA_1-\delta A_0&= (\overline{\pi }-\overline{\alpha }-\beta )A_0 + (\varepsilon -\overline{\varepsilon }+\overline{\rho })A_1+\sigma A_{\overline{1}} - \kappa A_2+\phi _0, \end{aligned}$$
(73a)
$$\begin{aligned} DA_2-\delta A_{\overline{1}}&= -\mu A_0 +\pi A_1 +(\overline{\pi }-\overline{\alpha }+\beta )A_{\overline{1}}+(\overline{\rho }-\varepsilon -\overline{\varepsilon })A_2+\phi _1, \end{aligned}$$
(73b)
$$\begin{aligned} \varDelta A_0-\overline{\delta }A_1&= (\gamma +\overline{\gamma }-\overline{\mu })A_0 + (\overline{\beta }-\alpha -\overline{\tau })A_1 - \tau A_{\overline{1}} + \rho A_2 - \phi _1, \end{aligned}$$
(73c)
$$\begin{aligned} \varDelta A_{\overline{1}}-\overline{\delta }A_2&= \nu A_0 - \lambda A_1 + (\overline{\gamma }-\gamma -\overline{\mu })A_{\overline{1}} + (\alpha +\overline{\beta }-\overline{\tau })A_2-\phi _2. \end{aligned}$$
(73d)

The Lorenz condition \(\nabla ^a A_a = 0\) in the Newman–Penrose formalism acquires the form

$$\begin{aligned} DA_2 - \varDelta A_0 - \delta A_{\overline{1}} - \overline{\delta }A_1&= (\gamma +\overline{\gamma }-\mu -\overline{\mu })A_0 + (\pi -\alpha +\overline{\beta }-\overline{\tau })A_1 \nonumber \\&\quad +(\overline{\pi }-\overline{\alpha }+\beta -\tau )A_{\overline{1}} + (\rho +\overline{\rho }-\varepsilon -\overline{\varepsilon })A_2 = 0. \end{aligned}$$
(74)

Projections of the gradient \(\varphi _{AA'}=\nabla _{AA'}\phi \) will be denoted by

$$\begin{aligned} \begin{aligned} \varphi _0 = D\phi , \qquad \varphi _2 = \varDelta \phi , \qquad \varphi _1 = \delta \phi , \qquad \varphi _{\overline{1}} = \overline{\delta }\phi , \\ \overline{\varphi }_0 = D\overline{\phi }, \qquad \overline{\varphi }_2 = \varDelta \overline{\phi }, \qquad \overline{\varphi }_1 = \delta \overline{\phi },\qquad \overline{\varphi }_{\overline{1}} = \overline{\delta }\,\overline{\phi } \end{aligned} \end{aligned}$$
(75)

Now we can complete equations for electromagnetic field. Equation (9),

$$\begin{aligned} \nabla ^A_{B'}\phi _{AB} = \frac{ie}{2}\left( \overline{\phi }\,\varphi _b - \phi \,\overline{\varphi }_b \right) - e^2\,\phi \,\overline{\phi }\,A_b, \end{aligned}$$

is the spinor version of Maxwell’s equations with four-current \(j^a\) on the right hand side. Projections of this equation onto the spin basis follow:

$$\begin{aligned} D\phi _1-\overline{\delta }\phi _0&= (\pi -2\alpha )\phi _0+2\rho \phi _1-\kappa \phi _2+\frac{ie}{2} \left( \phi \overline{\varphi }_0-\overline{\phi }\varphi _0\right) +e^2\phi \overline{\phi }A_0, \end{aligned}$$
(76a)
$$\begin{aligned} D\phi _2-\overline{\delta }\phi _1&= -\lambda \phi _0+2\pi \phi _1+(\rho -2\varepsilon )\phi _2+\frac{ie}{2}\left( \phi \overline{\varphi }_{\overline{1}}-\overline{\phi }\varphi _{\overline{1}}\right) +e^2\phi \overline{\phi }A_{\overline{1}}, \end{aligned}$$
(76b)
$$\begin{aligned} \varDelta \phi _0-\delta \phi _1&= (2\gamma -\mu )\phi _0 - 2\tau \phi _1+\sigma \phi _2 +\frac{ie}{2}\left( \overline{\phi }\varphi _1-\phi \overline{\varphi }_1\right) -e^2\phi \overline{\phi }A_1, \end{aligned}$$
(76c)
$$\begin{aligned} \varDelta \phi _1-\delta \phi _2&= \nu \phi _0 - 2\mu \phi _1 +(2\beta -\tau )\phi _2+\frac{ie}{2}\left( \overline{\phi }\varphi _2-\phi \overline{\varphi }_2\right) -e^2\phi \overline{\phi }A_2. \end{aligned}$$
(76d)

Dynamical equation for the gradient \(\varphi _{AA'}\) is provided by Eq. (12)

$$\begin{aligned} \nabla ^A_{A'}\varphi _{AB'}&= \,i\,e\,A^c\varphi _c\,\varepsilon _{A'B'} + \frac{1}{2}\left( m^2 - e^2\,A^c A_c\right) \phi \,\varepsilon _{A'B'}. \end{aligned}$$
(77)

Projected on the spin basis, this equation is equivalent to any of the following four scalar equations:

$$\begin{aligned} D\varphi _{\overline{1}}-\overline{\delta }\varphi _0&= (\pi -\alpha -\overline{\beta })\varphi _0+\overline{\sigma }\varphi _1+(\rho +\overline{\varepsilon }-\varepsilon )\varphi _{\overline{1}}-\overline{\kappa }\varphi _2, \end{aligned}$$
(78a)
$$\begin{aligned} D\varphi _2-\overline{\delta }\varphi _1&= -\overline{\mu }\varphi _0+(\pi -\alpha +\overline{\beta })\varphi _1+\overline{\pi }\varphi _{\overline{1}}+(\rho -\varepsilon -\overline{\varepsilon })\varphi _2 -\phi \,m^2/2 \nonumber \\&\quad +e^2\phi \left( A_0 A_2-A_1 A_{\overline{1}}\right) + ie\left( A_1\varphi _{\overline{1}}+A_{\overline{1}}\varphi _1-A_0\varphi _2-A_2\varphi _0 \right) , \end{aligned}$$
(78b)
$$\begin{aligned} \varDelta \varphi _0-\delta \varphi _{\overline{1}}&= (\gamma +\overline{\gamma }-\mu )\varphi _0 -\overline{\tau }\varphi _1+(\beta -\overline{\alpha }-\tau )\varphi _{\overline{1}}+\overline{\rho }\varphi _2 -\phi \, m^2/2\nonumber \\&\quad +e^2\phi \left( A_0 A_2-A_1 A_{\overline{1}}\right) + ie\left( A_1\varphi _{\overline{1}}+A_{\overline{1}}\varphi _1-A_0\varphi _2-A_2\varphi _0 \right) , \end{aligned}$$
(78c)
$$\begin{aligned} \varDelta \varphi _1-\delta \varphi _2&= \overline{\nu }\varphi _0+(\gamma -\overline{\gamma }-\mu )\varphi _1-\overline{\lambda }\varphi _{\overline{1}}+(\overline{\alpha }+\beta -\tau )\varphi _2. \end{aligned}$$
(78d)

The Ricci spinor is related to the electro-scalar fields by Einstein’s equations (16) and is given by formula (18). The Newman–Penrose components of the Ricci spinor read:

$$\begin{aligned} \varPhi _{00}&= \phi _0\,\overline{\phi }_0 + \left( \fancyscript{D}_0 \phi \right) \left( \fancyscript{D}_0\overline{\phi }\right) = \phi _0\overline{\phi }_0 + \varphi _0\overline{\varphi }_0 + e^2 A_0^2 \phi \overline{\phi }+ieA_0\left( \phi \overline{\varphi }_0-\overline{\phi }\varphi _0\right) , \end{aligned}$$
(79a)
$$\begin{aligned} \varPhi _{01}&= \phi _0\,\overline{\phi }_1 + \left( \fancyscript{D}_{(0} \phi \right) \left( \fancyscript{D}_{1)}\overline{\phi }\right) =\phi _0\overline{\phi }_1 + \varphi _{(0}\overline{\varphi }_{1)} + e^2 \phi \overline{\phi } A_0 A_1 \nonumber \\&\quad + ie\phi A_{(0}\overline{\varphi }_{1)} - ie\overline{\phi } A_{(0}\varphi _{1)},\end{aligned}$$
(79b)
$$\begin{aligned} \varPhi _{11}&= \phi _1\,\overline{\phi }_1 + \frac{1}{2}\,\left[ \left( \fancyscript{D}_{(0}\phi \right) \left( \fancyscript{D}_{2)}\overline{\phi }\right) + \left( \fancyscript{D}_{(1}\phi \right) \left( \fancyscript{D}_{\overline{1})}\overline{\phi }\right) \right] \end{aligned}$$
(79c)
$$\begin{aligned}&= \phi _1\,\overline{\phi }_1 + \frac{1}{2}\left[ \varphi _{(0}\overline{\varphi }_{2)} + \varphi _{(1}\overline{\varphi }_{\overline{1})} + ie\phi \left( A_{(0}\overline{\varphi }_{2)} + A_{(1}\overline{\varphi }_{\overline{1})} \right) \right. \nonumber \\&\quad \left. - ie\overline{\phi } \left( A_{(0}{\varphi }_{2)} + A_{(1}{\varphi }_{\overline{1})} \right) + e^2 \phi \overline{\phi } \left( A_0 A_2 - A_1 A_{\overline{1}} \right) \right] , \end{aligned}$$
(79d)
$$\begin{aligned} \varPhi _{02}&= \phi _0 \overline{\phi }_2 + \left( \fancyscript{D}_1\phi \right) \left( \fancyscript{D}_{1}\overline{\phi }\right) = \phi _0 \overline{\phi }_2 + \varphi _{1}\overline{\varphi }_{1} + e^2 \phi \overline{\phi }A_1^2 +ie\left( \phi A_1 \overline{\varphi }_1 - \overline{\phi }A_1\varphi _1\right) , \end{aligned}$$
(79e)
$$\begin{aligned} \varPhi _{12}&= \phi _1 \overline{\phi }_2 + \left( \fancyscript{D}_{(1}\phi \right) \left( \fancyscript{D}_{2)}\overline{\phi }\right) = \phi _1\overline{\phi }_2 + \varphi _{(1}\overline{\varphi }_{2)} + e^2 \phi \overline{\phi } A_1 A_2\nonumber \\&\quad + ie\left( \phi A_{(2}\overline{\varphi }_{1)}-\overline{\phi }A_{(2}\varphi _{1)}\right) , \end{aligned}$$
(79f)
$$\begin{aligned} \varPhi _{22}&= \phi _2\overline{\phi }_2 + \left( \fancyscript{D}_{2}\phi \right) \left( \fancyscript{D}_{2}\overline{\phi }\right) =\phi _2\overline{\phi }_2 + \varphi _2\,\overline{\varphi }_2 + e^2\phi \overline{\phi } A_2^2 +ieA_2\left( \phi \overline{\varphi }_2-\overline{\phi }\varphi _2\right) . \end{aligned}$$
(79g)
$$\begin{aligned} 6 \varLambda&= \varphi _{(1}\overline{\varphi }_{\overline{1})} - \varphi _{(0}\overline{\varphi }_{2)} + i e \overline{\phi }\left( A_{(0}\varphi _{2)} - A_{(1}\varphi _{\overline{1})}\right) + i e \phi \left( A_{(1}\overline{\varphi }_{\overline{1})} - A_{(0}\overline{\varphi }_{2)}\right) \nonumber \\&\quad +e^2\phi \overline{\phi }\left( A_{\overline{1}}A_1-A_0 A_2 \right) + m^2\phi \overline{\phi }. \end{aligned}$$
(80)

The Ricci identities in the tetrad introduced in Sect. 3 simplify to the following set of equations.

$$\begin{aligned} D \rho&= \rho ^2 + \sigma \,\overline{\sigma } + \varPhi _{00}, \end{aligned}$$
(81a)
$$\begin{aligned} D\sigma&= 2\,\rho \,\sigma + \varPsi _0, \end{aligned}$$
(81b)
$$\begin{aligned} D\alpha&= \rho \,\alpha + \beta \,\overline{\sigma } + \rho \,\pi + \varPhi _{10}, \end{aligned}$$
(81c)
$$\begin{aligned} D\beta&= (\alpha +\pi )\,\sigma + \rho \,\beta + \varPsi _1, \end{aligned}$$
(81d)
$$\begin{aligned} D\gamma&= 2\,\overline{\pi }\,\alpha + 2\,\pi \,\beta + \pi \,\overline{\pi } + \varPsi _2 - \varLambda + \varPhi _{11}, \end{aligned}$$
(81e)
$$\begin{aligned} D\lambda - \overline{\delta }\pi&= \rho \,\lambda + \mu \,\overline{\sigma } + 2\,\alpha \,\pi + \varPhi _{20}, \end{aligned}$$
(81f)
$$\begin{aligned} D\mu - \delta \pi&= \rho \,\mu + \sigma \,\lambda + 2\,\beta \,\pi + \varPsi _2 + 2\,\varLambda , \end{aligned}$$
(81g)
$$\begin{aligned} D\nu - \varDelta \pi&= 2\,\pi \,\mu + 2\,\overline{\pi }\,\lambda + (\gamma -\overline{\gamma })\pi + \varPsi _3 + \varPhi _{21}, \end{aligned}$$
(81h)
$$\begin{aligned} D\tau&= 2\,\overline{\pi }\,\rho + 2\,\pi \,\sigma + \varPsi _1 + \varPhi _{01}, \end{aligned}$$
(81i)
$$\begin{aligned} \varDelta \rho - \overline{\delta }\tau&= (\gamma +\overline{\gamma }-\mu )\rho - \sigma \,\lambda - 2\,\alpha \,\tau - \varPsi _2 - 2\,\varLambda , \end{aligned}$$
(81j)
$$\begin{aligned} \varDelta \sigma - \delta \tau&= - (\mu -3\,\gamma +\overline{\gamma })\,\sigma - \overline{\lambda }\,\rho - 2\,\beta \,\tau - \varPhi _{02}, \end{aligned}$$
(81k)
$$\begin{aligned} \varDelta \lambda - \overline{\delta }\nu&= -(2\,\mu + 3\,\gamma - \overline{\gamma })\,\lambda - (3\,\alpha +\beta )\,\nu , \end{aligned}$$
(81l)
$$\begin{aligned} \varDelta \alpha - \overline{\delta }\gamma&= \rho \,\nu - (\beta +\tau )\,\lambda + (\overline{\gamma }-\mu )\,\alpha + (\overline{\beta }-\overline{\tau })\,\gamma - \varPsi _3, \end{aligned}$$
(81m)
$$\begin{aligned} \varDelta \beta - \delta \gamma&= -\,\mu \,\tau + \sigma \,\nu + (\gamma -\overline{\gamma }-\mu )\,\beta - \alpha \,\overline{\lambda } - \varPhi _{12}, \end{aligned}$$
(81n)
$$\begin{aligned} \varDelta \mu - \delta \nu&= - (\mu +\gamma +\overline{\gamma })\,\mu - \lambda \,\overline{\lambda }+ \overline{\nu }\,\pi + 2\,\beta \,\nu - \varPhi _{22}, \end{aligned}$$
(81o)
$$\begin{aligned} \delta \alpha - \overline{\delta }\beta&= \mu \,\rho - \lambda \,\sigma + \alpha \,\overline{\alpha } + \beta \,\overline{\beta } - 2\,\alpha \,\beta - \varPsi _2 + \varLambda + \varPhi _{11}, \end{aligned}$$
(81p)
$$\begin{aligned} \delta \lambda - \overline{\delta }\mu&= \pi \,\mu + (\overline{\alpha }-3\,\beta )\,\lambda - \varPsi _3 + \varPhi _{21}, \end{aligned}$$
(81q)
$$\begin{aligned} \delta \rho -\overline{\delta }\sigma&= (\overline{\alpha } + \beta )\,\rho - (3\,\alpha -\overline{\beta })\,\sigma - \varPsi _1 + \varPhi _{01}. \end{aligned}$$
(81r)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholtz, M., Holka, L. On the Bondi mass of Maxwell–Klein–Gordon spacetimes. Gen Relativ Gravit 46, 1665 (2014). https://doi.org/10.1007/s10714-014-1665-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1665-7

Keywords

Navigation