Skip to main content
Log in

On the geometrization of matter by exotic smoothness

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper we discuss the question how matter may emerge from space. For that purpose we consider the smoothness structure of spacetime as underlying structure for a geometrical model of matter. For a large class of compact 4-manifolds, the elliptic surfaces, one is able to apply the knot surgery of Fintushel and Stern to change the smoothness structure. The influence of this surgery to the Einstein–Hilbert action is discussed. Using the Weierstrass representation, we are able to show that the knotted torus used in knot surgery is represented by a spinor fulfilling the Dirac equation and leading to a Dirac term in the Einstein–Hilbert action. For sufficient complicated links and knots, there are “connecting tubes” (graph manifolds, torus bundles) which introduce an action term of a gauge field. Both terms are genuinely geometrical and characterized by the mean curvature of the components. We also discuss the gauge group of the theory to be U(1) × SU(2) × SU(3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akbulut S.: Lectures on Seiberg-Witten invariants. Turkish J. Math. 20, 95–119 (1996)

    MATH  MathSciNet  Google Scholar 

  2. Akbulut S.: A fake cusp and a fishtail. Turkish J. Math. 23, 19–31 (1999)

    MATH  MathSciNet  Google Scholar 

  3. Ashtekar A., Engle J., Sloan D.: Asymptotics and Hamiltonians in a first order formalism. Class. Quantum Grav. 25, 095020 (2008) arXiv:0802.2527

    Article  MathSciNet  ADS  Google Scholar 

  4. Ashtekar A., Sloan D.: Action and Hamiltonians in higher dimensional general relativity: first order framework. Class. Quantum Grav. 25, 225025 (2008) arXiv:0808.2069

    Article  MathSciNet  ADS  Google Scholar 

  5. Asselmeyer T.: Generation of source terms in general relativity by differential structures. Class. Quantum Grav. 14, 749–758 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  6. Asselmeyer-Maluga T.: Exotic smoothness and quantum gravity. Class. Quantum Grav. 27, 165002 (2010) arXiv:1003.5506.

    Article  MathSciNet  ADS  Google Scholar 

  7. Bernal A.N., Saánchez M.: Smoothness of time functions and the metric splitting of globally hyperbolic space times. Commun. Math. Phys. 257, 43–50 (2005) arXiv:gr-qc/0401112

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Bernal A.N., Saánchez M.: Globally hyperbolic spacetimes can be defined as “causal” instead of “strongly causal”. Class. Quantum Grav. 24, 745–750 (2007) arXiv:gr-qc/0611138

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Bernal A.N., Sánchez M.: On smooth Cauchy hypersurfaces and Geroch’s splitting theorem. Commun. Math. Phys. 243, 461–470 (2003) arXiv:gr-qc/0306108

    Article  MATH  ADS  Google Scholar 

  10. Bernal A.N., Sánchez M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77, 183–197 (2006) gr-qc/0512095

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Besse A.L.: Einstein Manifolds, Ergebnisse der Mathematik und Ihrer Grenzgebiete, vol. 10. Springer, Berlin (1987)

    Google Scholar 

  12. Bilson-Thompson, S.O.: A Topological Model of Composite Preons. (2005). arXiv:hep-ph/0503213v2

  13. Bilson-Thompson S.O., Markopoulou F., Smolin L.: Quantum gravity and the standard model. Class. Quantum Grav. 24, 3975–3994 (2007) arXiv:hep-th/0603022v2

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Brans C.H.: Exotic smoothness and physics. J. Math. Phys. 35, 5494–5506 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Brans C.H.: Localized exotic smoothness. Class. Quantum Grav. 11, 1785–1792 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Brans C.H., Randall D.: Exotic differentiable structures and general relativity. Gen. Relativ. Gravit. 25, 205 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Budney R.: JSJ-decompositions of knot and link complements in the 3-sphere. L’enseignement Math. 52, 319–359 (2006) arXiv:math/0506523

    MATH  MathSciNet  Google Scholar 

  18. Calegari, D.: Foliations and the Geometry of 3-Manifolds, Oxford Mathematical Monographs. Oxford University Press, Oxford (2007)

  19. Donaldson S.: Polynomial invariants for smooth four manifolds. Topology 29, 257–315 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Donaldson S., Kronheimer P.: The Geometry of Four-Manifolds. Oxford University Press, Oxford (1990)

    MATH  Google Scholar 

  21. Dowker F., Surya S.: Topology change and causal continuity. Phys. Rev. D 58, 124019 (1998) arXiv:gr-qc/9711070

    Article  MathSciNet  ADS  Google Scholar 

  22. Ellis G.F.R., Schmidt B.G.: Singular space-times. Gen. Relativ. Gravit. 8, 915–953 (1977) Review Article

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Finkelstein R.J.: Knots and Preons. Int. J. Mod. Phys. A 24, 2307–2316 (2009) arXiv:0806.3105 [hep-th]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Fintushel R., Stern R.: Knots, links, and 4-manifolds. Inv. Math. 134, 363–400 (1998) (dg-ga/9612014)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Fintushel R., Stern R.J.: Instanton homology of Seifert fibred homology three spheres. Proc. Lond. Math. Soc. 61, 109–137 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  26. Fintushel R., Stern R.J.: Nondiffeomorphic symplectic 4-manifolds with the same Seiberg–Witten invariants. Geom. Topol. Monogr. 2, 103–111 (1999) arXiv:math/9811019

    Article  MathSciNet  Google Scholar 

  27. Fintushel, R., Stern, R.J.: Families of Simply Connected 4-Manifolds with the Same Seiberg–Witten Invariants. (2002) aXiv:math/0210206

  28. Floer A.: An instanton invariant for 3-manifolds. Commun. Math. Phys. 118, 215–240 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Freedman M.H.: The topology of four-dimensional manifolds. J. Differ. Geom. 17, 357–454 (1982)

    MATH  Google Scholar 

  30. Friedrich T.: On the spinor representation of surfaces in euclidean 3-space. J. Geom. Phys. 28, 143–157 (1998) arXiv:dg-ga/9712021v1

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Gibbons G.W., Hawking S.W.: Action integrals and partition functions in quantum gravity. Phys. Rev. D 15, 2752–2756 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  32. Giulini D.: Properties of 3-manifolds for relativists. Int. J. Theor. Phys. 33, 913–930 (1994) arXiv:gr-qc/9308008

    Article  MATH  MathSciNet  Google Scholar 

  33. Giulini, D.: Matter from Space. Based on a Talk Delivered at the Conference “Beyond Einstein: Historical Perspectives on Geometry, Gravitation, and Cosmology in the Twentieth Century”, September 2008 at the University of Mainz in Germany. To appear in the Einstein-Studies Series, Birkhaeuser, Boston (2009). arXiv:0910.2574

  34. Giveon A., Kutasov D.: Brane dynamics and gauge theory. Rev. Mod. Phys. 71, 983–1084 (1999) arXiv:hep-th/9802067

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Gompf R.: An infinite set of exotic \({{\mathbb{R}}^4}\)’s. J. Differ. Geom. 21, 283–300 (1985)

    MATH  MathSciNet  Google Scholar 

  36. Gompf R.: Sums of elliptic surfaces. J. Differ. Geom. 34, 93–114 (1991)

    MATH  MathSciNet  Google Scholar 

  37. Gompf R.E., Stipsicz A.I.: 4-Manifolds and Kirby Calculus. American Mathematical Society, Providence (1999)

    MATH  Google Scholar 

  38. Hatcher, A., McCullough, D.: Finiteness of classifying spaces of relative diffeomorphism groups of 3-manifolds. Geom. Top. 1, 91–109 (1997). http://www.math.cornell.edu/~hatcher/Papers/bdiffrel.pdf.

    Google Scholar 

  39. Hawking S.W., Ellis G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  40. Kalliongis J., McCullough D.: Isotopies of 3-manifolds. Topol. Appl. 71, 227–263 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  41. Kervaire M.A., Milnor J.: Groups of homotopy spheres: I. Ann. Math. 77, 504–537 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  42. Kirby, R., Siebenmann, L.C.: Foundational Essays on Topological Manifolds, Smoothings, and Triangulations. Annals of Mathematics Studies. Princeton University Press, Princeton (1977)

  43. Kuiper N.H., Meeks W.H. III: The total curvature of a knotted torus. J. Differ. Geom. 26, 371–384 (1987)

    MATH  MathSciNet  Google Scholar 

  44. Kusner, R., Schmitt, N.: The Spinor Rrepresentation of Surfaces in Space (1996). arXiv:dg-ga/9610005v1

  45. Langevin R., Rosenberg H.: On curvature integrals and knots. Topology 15, 405–416 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  46. LeBrun C.: Four-manifolds without einstein metrics. Math. Res. Lett. 3, 133–147 (1996)

    MATH  MathSciNet  Google Scholar 

  47. LeBrun C.: Weyl curvature, Einstein metrics, and Seiberg-Witten theory. Math. Res. Lett. 5, 423–438 (1998) arXiv:math/9803093

    MATH  MathSciNet  Google Scholar 

  48. Milnor J.: A unique decomposition theorem for 3-manifolds. Am. J. Math. 84, 1–7 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  49. Milnor J.: Lectures on the h-Cobordism Theorem. Princeton University Press, Princeton (1965)

    MATH  Google Scholar 

  50. Misner C., Thorne K., Wheeler J.: Gravitation. Freeman, San Francisco (1973)

    Google Scholar 

  51. Mostow G.D.: Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms. Publ. Math. IHÉS 34, 53–104 (1968)

    MATH  MathSciNet  Google Scholar 

  52. Munkres J.: Obstructions to the smoothing of pieceswise-differential homeomeomorphisms. Ann. Math. 72, 554–621 (1960)

    Article  MathSciNet  Google Scholar 

  53. Perelman, G.: The Entropy Formula for the Ricci Flow and its Geometric Applications. (2002). arXiv:math.DG/0211159

  54. Perelman, G.: Finite Extinction Time for the Solutions to the Ricci Flow on Certain Three-Manifods. (2003). arXiv:math.DG/0307245

  55. Perelman, G.: Ricci Flow with Surgery on Three-Manifolds (2003). arXiv:math.DG/0303109

  56. Quinn F.: Ends of Maps III: dimensions 4 and 5. J. Differ. Geom. 17, 503–521 (1982)

    MATH  MathSciNet  Google Scholar 

  57. Rolfson D.: Knots and Links. Publish or Prish, Berkeley (1976)

    Google Scholar 

  58. Sładkowski J.: Gravity on exotic \({{\mathbb R}^{4}}\) with few symmetries. Int. J. Mod. Phys. D 10, 311–313 (2001)

    Article  MATH  ADS  Google Scholar 

  59. Taubes C.H.: Gauge theory on asymptotically periodic 4-manifolds. J. Differ. Geom. 25, 363–430 (1987)

    MATH  MathSciNet  Google Scholar 

  60. Thurston W.: Three-Dimensional Geometry and Topology. 1st edn. Princeton University Press, Princeton (1997)

    MATH  Google Scholar 

  61. Witten, E.: 2+1 Dimensional gravity as an exactly soluble system. Nucl. Phys. B 311, 46–78 (1988/89)

    Google Scholar 

  62. Witten E.: Topology-changing amplitudes in 2 + 1 dimensional gravity. Nucl. Phys. B 323, 113–140 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  63. Witten E.: Quantization of Chern-Simons gauge theory with complex gauge group. Commun. Math. Phys. 137, 29–66 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  64. Witten E.: Monopoles and four-manifolds. Math. Res. Lett. 1, 769–796 (1994)

    MATH  MathSciNet  Google Scholar 

  65. Yasui, K.: Nuclei and Exotic 4-Manifolds. (2011). arXiv:1111.0620

  66. York J.W.: Role of conformal three-geometry in the dynamics of gravitation. Phys. Rev. Lett. 28, 1082–1085 (1972)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Asselmeyer-Maluga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asselmeyer-Maluga, T., Rosé, H. On the geometrization of matter by exotic smoothness. Gen Relativ Gravit 44, 2825–2856 (2012). https://doi.org/10.1007/s10714-012-1419-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-012-1419-3

Keywords

Navigation