, Volume 43, Issue 4, pp 1083-1093
Date: 30 Sep 2010

Limits on decaying dark energy density models from the CMB temperature–redshift relation

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The nature of the dark energy is still a mystery and several models have been proposed to explain it. Here we consider a phenomenological model for dark energy decay into photons and particles as proposed by Lima (Phys Rev D 54:2571, 1996). He studied the thermodynamic aspects of decaying dark energy models in particular in the case of a continuous photon creation and/or disruption. Following his approach, we derive a temperature redshift relation for the cosmic microwave background (CMB) which depends on the effective equation of state w eff and on the “adiabatic index” γ. Comparing our relation with the data on the CMB temperature as a function of the redshift obtained from Sunyaev–Zel’dovich observations and at higher redshift from quasar absorption line spectra, we find w eff = −0.97 ± 0.03, adopting for the adiabatic index γ = 4/3, in good agreement with current estimates and still compatible with w eff = −1, implying that the dark energy content being constant in time.