Skip to main content
Log in

Gravimagnetism, causality, and aberration of gravity in the gravitational light-ray deflection experiments

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Experimental verification of the existence of gravimagnetic fields generated by currents of matter is important for a complete understanding and formulation of gravitational physics. Although the rotational (intrinsic) gravimagnetic field has been extensively studied and is now being measured by the Gravity Probe B, the extrinsic gravimagnetic field generated by the translational current of matter is less well studied. The present paper uses the post-Newtonian parametrized Einstein and light geodesics equations to show that the extrinsic gravimagnetic field generated by the translational current of matter can be measured by observing the relativistic time delay and/or light deflection caused by the moving mass. We prove that the extrinsic gravimagnetic field is generated by the relativistic effect of the aberration of the gravity force caused by the Lorentz transformation of the metric tensor and the Levi–Civita connection. We show that the Lorentz transformation of the gravity field variables is equivalent to the technique of the retarded Lienard–Wiechert gravitational potentials predicting that a light particle is deflected by gravitational field of a moving body from its retarded position so that both general-relativistic phenomena—the aberration and the retardation of gravity—are tightly connected and observing the aberration of gravity proves that gravity has a causal nature. We explain in this framework the 2002 deflection experiment of a quasar by Jupiter where the aberration of gravity from its orbital motion was measured with accuracy 20%. We describe a theory of VLBI experiment to measure the gravitational deflection of radio waves from a quasar by the Sun, as viewed by a moving observer from the geocentric frame, to improve the measurement accuracy of the aberration of gravity to a few percent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashby N. (2004). General relativity: Frame-dragging confirmed. Nature 31: 918

    Article  ADS  Google Scholar 

  2. Ashby N. and Shahid-Saless B. (1990). Geodetic precession or dragging of inertial frames?. Phys. Rev. D 42: 1118

    Article  ADS  Google Scholar 

  3. Bekaert X, Boulanger N. and Vázquez-Poritz J.F. (2002). Gravitational Lorentz Violations from M-Theory. J. High Energy Phys. 10: 53

    Article  ADS  Google Scholar 

  4. Bertotti B., Iess L. and Tortora P. (2003). A test of general relativity using radio links with the Cassini spacecraft. Nature 425: 374

    Article  ADS  Google Scholar 

  5. Bini D., Jantzen R.T. and Mashhoon B. (2001). Gravitomagnetism and relative observer clock effects. Class. Quant. Grav. 18: 653

    Article  MATH  ADS  Google Scholar 

  6. Bini D., Cherubini C., Jantzen R.T. and Mashhoon B. (2003). Gravitomagnetism in the Kerr-Newman-Taub-NUT spacetime. Class. Quant. Grav. 20: 457

    Article  MATH  ADS  Google Scholar 

  7. Bonilla M.Á.G. and Senovilla J.M.M. (1997). Very Simple Proof of the Causal Propagation of Gravity in Vacuum. Phys. Rev. Lett. 78: 783

    Article  ADS  Google Scholar 

  8. Braginsky V.B., Caves C.M. and Thorne K.S. (1977). Laboratory experiments to test relativistic gravity. Phys. Rev D 15: 2047

    Article  ADS  Google Scholar 

  9. Brumberg V.A. and Kopeikin S.M. (1990). Relativistic time scales in the solar system. Cel. Mech. Dyn. Astron. 48: 23

    Article  ADS  Google Scholar 

  10. Camacho A. (2002). Coupling gravitomagnetism-spin and Berry’s phase. Gen. Rel. Grav. 34: 1963

    Article  MATH  Google Scholar 

  11. Camacho A. (2002). Quantum Zeno effect and the detection of gravitomagnetism. In: Cianci, R., Collina, R., Francaviglia, M. and Fré, P. (eds) Recent developments in general relativity. 14th SIGRAV Conference on Gen. Rel. and Grav. Phys., pp 347–351. Springer, Milano

    Google Scholar 

  12. Carlip S. (2004). Model-dependence of Shapiro time delay and the ‘speed of gravity/speed of light’ controversy. Class. Quant. Grav. 21: 3803

    Article  MATH  ADS  Google Scholar 

  13. Ciufolini I. (1986). Measurement of the Lense-Thirring drag on high-altitude, laser-ranged artificial satellites. Phys. Rev. Lett. 56: 278

    Article  ADS  Google Scholar 

  14. Ciufolini, I.: Gravitomagnetism, Lense-Thirring Effect and De Sitter Precession. In: Pascual-Sanchez, J.F., Flori, L., San Miguel, A., Vicente, F. (eds.) Reference Frames and Gravitomagnetism. In: Proc. XXIII Spanish Relativity Meeting. World Scientific, Singapore, pp. 25–34 (2001)

  15. Ciufolini I. and Pavlis E.C. (2004). A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature 431: 958

    Article  ADS  Google Scholar 

  16. Ciufolini I. and Pavlis E. (2005). On the measurement of the Lense-Thirring effect using the nodes of the LAGEOS satellites, in reply to “On the reliability of the so-far performed tests for measuring the Lense-Thirring effect with the LAGEOS satellites” by L. Iorio. New Astron. 10: 636

    Article  ADS  Google Scholar 

  17. Ciufolini I. and Ricci F. (2002). Time delay due to spin and gravitational lensing. Class. Quant. Grav. 19: 3863

    Article  MATH  ADS  Google Scholar 

  18. Ciufolini I. and Ricci F. (2002). Time delay due to spin inside a rotating shell. Class. Quant. Grav. 19: 3875

    Article  MATH  ADS  Google Scholar 

  19. Ciufolini I. and Wheeler J.A. (1995). Gravitation and Inertia. Princeton University Press, Princeton

    MATH  Google Scholar 

  20. Ciufolini I., Kopeikin S., Mashhoon B. and Ricci F. (2003). On the gravitomagnetic time delay. Phys. Lett. A 308: 101

    Article  ADS  Google Scholar 

  21. Damour T. and Nordtvedt K. (1993). General relativity as a cosmological attractor of tensor-scalar theories. Phys. Rev. Lett. 70: 2217

    Article  ADS  Google Scholar 

  22. Dittus H.L., Lämmerzahl C. and Turyshev S.G. (2007). Lasers, Clocks, and Drag-Free: Exploration of Relativistic Gravity in Space. Astrophysics and Space Science Library, vol. 349. Springer, Berlin

    Google Scholar 

  23. Einstein A. (1911). Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes. Ann. Phys. 35: 898

    Article  Google Scholar 

  24. Ellis G.F.R. and Uzan J.-P. (2005). c is the speed of light, isn’t it?. Am. J. Phys. 73: 240

    Article  ADS  Google Scholar 

  25. Fock V. (1957). Three Lectures on Relativity Theory. Rev. Mod. Phys. 29: 325

    Article  MATH  ADS  Google Scholar 

  26. Fock V. (1964). Theory of Space, Time and Gravitation 2nd edition. Pergaman Press, Macmillan Company

    Google Scholar 

  27. Fomalont E.B. and Kopeikin S.M. (2003). The Measurement of the Light Deflection from Jupiter: Experimental Results. Astrophys. J. 598: 704

    Article  ADS  Google Scholar 

  28. Fomalont E. and Reid M. (2004). Microarcsecond astrometry using the SKA. New Astron. Rev. 48: 1473

    Article  ADS  Google Scholar 

  29. Fomalont E.B. and Sramek R.A. (1976). Measurements of the solar gravitational deflection of radio waves in agreement with general relativity. Phys. Rev. Lett. 36: 1475

    Article  ADS  Google Scholar 

  30. Frittelli S. (2003). Aberration by gravitational lenses in motion. Mon. Not. R. Astron. Soc. 344: L85

    Article  ADS  Google Scholar 

  31. Futamase T. and Schutz B.F. (1983). Newtonian and post-Newtonian approximations are asymptotic to general relativity. Phys. Rev. D 28: 2363

    Article  ADS  Google Scholar 

  32. Hannay J.H. (1985). Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian. J. Phys. A Math. Gen. 18: 221

    Article  ADS  Google Scholar 

  33. Harada W. and Fukushima T. (2003). Harmonic Decomposition of Time Ephemeris TE405. Astron. J. (USA) 126: 2557

    ADS  Google Scholar 

  34. Hawking S.W. and Ellis G.F.R. (1975). The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge

    Google Scholar 

  35. Hellings, R.W.: Relativistic effects in astronomical timing measurements. Astron. J. (USA) 91, 650; Erratum in: Astron. J. (USA) 92, 1446 (1986)

    Google Scholar 

  36. IERS Conventions: Dennis D. McCarthy and Gérard Petit. (IERS Technical Note 32) Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 2004. Chap. 11. (2003)

  37. Iorio L. (2003). On Some Gravitational Spin-Spin Effect for Astronomical Bodies. Int. J. Mod. Phys. D 12: 35

    Article  ADS  Google Scholar 

  38. Iorio L. (2005). On the reliability of the so-far performed tests for measuring the Lense Thirring effect with the LAGEOS satellites. New Astron. 10: 603

    Article  ADS  Google Scholar 

  39. Iorio L., Ciufolini I., Pavlis E.C., Schiller S., Dittus H. and Lämmerzahl C. (2004). On the possibility of measuring the Lense Thirring effect with a LAGEOS-LAGEOS II-OPTIS mission. Class. Quant. Grav. 21: 2139

    Article  MATH  ADS  Google Scholar 

  40. Jackson J.D. (1998). Classical Electrodynamics. Wiley, New York

    Google Scholar 

  41. Kaplan, G.H.: The IAU Resolutions on Astronomical Reference Systems, Time Scales, and Earth Rotation Models: Explanation and Implementation. USNO Circular 179 (http://www.aa.usno.navy.mil/publications/docs/Circular_179.html) (2005)

  42. Klioner S.A. (2003). Light propagation in the gravitational field of moving bodies by means of Lorentz transformation I. Mass monopoles moving with constant velocities. Astron. Astrophys. 404: 783

    Article  MATH  ADS  Google Scholar 

  43. Kopeikin S.M. (1990). Theory of Relativity in Observational Radio Astronomy. Sov. Astron. 34: 5

    ADS  Google Scholar 

  44. Kopeikin S.M. (2003). The post-Newtonian treatment of the VLBI experiment on September 8, 2002. Phys. Lett. A. 312: 147

    Article  ADS  Google Scholar 

  45. Kopeikin S.M. (2004). The speed of gravity in general relativity and theoretical interpretation of the Jovian deflection experiment. Class. Quant. Grav. 21: 3251

    Article  MATH  ADS  Google Scholar 

  46. Kopeikin S.M. (2005). Comment on ‘Model-dependence of Shapiro time delay and the “speed of gravity/speed of light” controversy’. Class. Quant. Grav. 22: 5181

    Article  MATH  ADS  Google Scholar 

  47. Kopeikin S.M. (2006). Gravitomagnetism and the Speed of Gravity. Int. J. Mod. Phys. D 15: 305

    Article  MATH  ADS  Google Scholar 

  48. Kopeikin S.M. (2001). Testing the Relativistic Effect of the Propagation of Gravity by Very Long Baseline Interferometry. Astrophys. J. Lett. 556: L1

    Article  ADS  Google Scholar 

  49. Kopeikin S.M. and Fomalont E.B. (2006). Aberration and the Fundamental Speed of Gravity in the Jovian Deflection Experiment. Found. Phys. 36: 1244

    Article  MATH  ADS  Google Scholar 

  50. Kopeikin S.M. and Fomalont E.B. (2006). On the speed of gravity and relativistic v/c corrections to the Shapiro time delay. Phys. Lett. A. 355: 163

    Article  ADS  Google Scholar 

  51. Kopeikin S.M. and Makarov V.V. (2007). Gravitational bending of light by planetary multipoles and its measurement with microarcsecond astronomical interferometers. Phys. Rev. D 75: 062002

    Article  ADS  Google Scholar 

  52. Kopeikin S.M. and Mashhoon B. (2002). Gravitomagnetic effects in the propagation of electromagnetic waves in variable gravitational fields of arbitrary-moving and spinning bodies. Phys. Rev D 65: 064025

    Article  ADS  Google Scholar 

  53. Kopeikin S.M. and Ozernoy L.M. (1999). Post-Newtonian Theory for Precision Doppler Measurements of Binary Star Orbits. Astrophys. J. 523: 771

    Article  ADS  Google Scholar 

  54. Kopeikin S.M. and Schäfer G. (1999). Lorentz covariant theory of light propagation in gravitational fields of arbitrary-moving bodies. Phys. Rev D 60: 124002

    Article  ADS  Google Scholar 

  55. Kopeikin S. and Vlasov I. (2004). Parametrized post-Newtonian theory of reference frames, multipolar expansions and equations of motion in the N-body problem. Phys. Rep. 400: 209

    Article  ADS  Google Scholar 

  56. Kopeikin S.M. and Wei-Tou Ni. (2007). Laser Ranging Delay in the Bi-Metric Theory of Gravity. In: Dittus, H.L., Lämmerzahl, C. and Turyshev, S.G. (eds) Lasers, Clocks, and Drag-Free: Exploration of Relativistic Gravity in Space. Astrophysics and Space Science Library, vol 249, pp 209–216. Springer, Berlin

    Google Scholar 

  57. Kovalevsky J. and Seidelmann P.K. (2004). Fundamentals of Astrometry. Cambridge University Press, Cambridge

    Google Scholar 

  58. Lämmerzahl, C., Neugebauer, G.: The Lense-Thirring Effect: From the Basic Notions to the Observed Effects; In: Gyros, Clocks, Interferometers... : Testing Relativistic Gravity in Space, Edited by C. Lämmerzahl, C.W.F. Everitt, F.W. Hehl, Lecture Notes in Physics, vol. 562, p. 31 Lecture Notes in Physics (2001)

  59. Landau L.D. and Lifshitz E.M. (1971). The Classical Theory of Fields. Pergamon, Oxford

    Google Scholar 

  60. Lebach D.E., Corey B.E., Shapiro I.I., Ratner M.I., Webber J.C., Rogers A.E.E., Davis J.L. and Herring T.A. (1995). Measurement of the Solar Gravitational Deflection of Radio Waves Using Very-Long-Baseline Interferometry. Phys. Rev. Lett. 75: 1439

    Article  ADS  Google Scholar 

  61. Mashhoon B. (1974). Can Einstein’s theory of gravitation be tested beyond the geometrical optics limit?. Nature 250: 316

    Article  ADS  Google Scholar 

  62. Mashhoon B. (2001). Gravitoelectromagnetism. In: Pascual-Snchez, J.F., Floría, L., San Miguel, A. and Vicente, F. (eds) Reference Frames and Gravitomagnetism. Proc. XXIII Spanish Relativity Meeting, pp 121–132. World Scientific, Singapore

    Google Scholar 

  63. Mattingly, D.: Modern Tests of Lorentz Invariance. Living Rev. Relativity 8, (2005), 5. URL (cited on Sep 7, 2005): http://www.livingreviews.org/lrr-2005-5 (2004)

  64. Mashhoon B., Hehl F.W. and Theiss D.S. (1984). On the gravitational effects of rotating masses - The Thirring-Lense Papers. Gen. Rel. Grav. 16: 711

    Article  ADS  Google Scholar 

  65. Mashhoon B., McClune J.C. and Quevedo H. (1999). On the gravitoelectromagnetic stress-energy tensor. Class. Quant. Grav. 16: 1137

    Article  MATH  ADS  Google Scholar 

  66. Mashhoon B., Iorio L. and Lichtenegger H. (2001). On the gravitomagnetic clock effect. Phys. Lett. A 292: 49

    Article  MATH  ADS  Google Scholar 

  67. Maartens R., Mashhoon B. and Matravers D.R. (2002). Holonomy and gravitomagnetism. Class. Quant. Grav. 19: 195

    Article  MATH  ADS  Google Scholar 

  68. Merloni A., Vietri M., Stella L. and Bini D. (1999). On gravitomagnetic precession around black holes. Mon. N. R. Astron. Soc. 304: 155

    Article  ADS  Google Scholar 

  69. Misner C.W., Thorne K.S. and Wheeler J.A. (1973). Gravitation. Freeman, New York

    Google Scholar 

  70. Ni W.-T. (2005). Empirical Foundations of the Relativistic Gravity. Int. J. Mod. Phys. D 14: 901

    Article  MATH  ADS  Google Scholar 

  71. Nordtvedt K. (1988). Gravitomagnetic interaction and laser ranging to Earth satellites. Phys. Rev. Lett. 61: 2647

    Article  ADS  Google Scholar 

  72. O’Connell R.F. (2004). Proposed New Test of Spin Effects in General Relativity. Phys. Rev. Lett. 93: 081103

    Article  ADS  Google Scholar 

  73. Pascual-Sánchez J.-F. (2004). Speed of Gravity and Gravitomagnetism. Int. J. Mod. Phys. 13: 2345

    MATH  ADS  Google Scholar 

  74. Penrose R. (1968). Structure of Space-Time. In: De Witt, C.M. and Wheeler, J.A. (eds) Battelle Recontres, pp 121–235. Benjamin, New York

    Google Scholar 

  75. Petrov A.Z. (1969). Einstein Spaces. Pergamon, New York

    MATH  Google Scholar 

  76. Pitjeva E.V. (2005). High-Precision Ephemerides of Planets?EPM and Determination of Some Astronomical Constants. Solar Syst. Res. 39: 176

    Article  ADS  Google Scholar 

  77. Rafikov R.R. and Lai D. (2006). Effects of gravitational lensing and companion motion on the binary pulsar timing. Phys. Rev. D, vol. 73(6): 063003

    Article  ADS  Google Scholar 

  78. Ruggiero M.L. and Tartaglia A. (2005). Post-Keplerian parameter to test gravitomagnetic effects in binary pulsar systems. Phys. Rev. D 72: 084030

    Article  ADS  Google Scholar 

  79. Schilizzi, R.T.: The Square Kilometer Array. In: Proc. of the SPIE, vol. 5489, pp. 62–71

  80. Schneider P., Ehlers J. and Falco E. (1992). Gravitational Lenses. Springer-Verlag, Berlin

    Google Scholar 

  81. Shapiro I.I. (1964). Fourth Test of General Relativity. Phys. Rev. Lett. 13: 789

    Article  ADS  Google Scholar 

  82. Skrotskii G.V. (1957). On the influence of gravity on the light propagation. Doklady Akad. Nauk SSSR 114: 73

    Google Scholar 

  83. Soffel M., Klioner S.A., Petit G., Wolf P., Kopeikin S.M., Bretagnon P., Brumberg V.A., Capitaine N., Damour T., Fukushima T., Guinot B., Huang T.-Y., Lindegren L., Ma C., Nordtvedt K., Ries J.C., Seidelmann P.K., Vokrouhlick D., Will C.M. and Xu C. (2003). The IAU 2000 Resolutions for Astrometry, Celestial Mechanics, and Metrology in the Relativistic Framework: Explanatory Supplement. Astron. J. (USA) 126: 2687

    ADS  Google Scholar 

  84. Spallicci A. (2004). Satellite measurement of the Hannay angle. Nuov. Cim. B. 119: 1215

    ADS  Google Scholar 

  85. Spallicci A., Morbidelli A. and Metris G. (2005). The three-body problem and the Hannay angle. Nonlinearity 18: 45

    Article  MATH  ADS  Google Scholar 

  86. Standish, E.M.: JPL planetary ephemeris DE410 Interoffice Memorandum 312.N-03-109 (2003)

  87. Tartaglia A. (2000). Detection of the gravitomagnetic clock effect. Class. Quant. Grav. 17: 783

    Article  MATH  ADS  Google Scholar 

  88. Tartaglia A. and Ruggiero M.L. (2004). Gravito-electromagnetism versus electromagnetism. Eur. J. Phys. 25: 203

    Article  MATH  Google Scholar 

  89. Tartaglia A., Ruggiero M.L. and Nagar A. (2005). Time delay in binary systems. Phys. Rev. D 71: 023003

    Article  ADS  Google Scholar 

  90. Urban, S.E., Bell, S., Kaplan, G.H., Hohenkerk, C.Y., Stewart, S.G., Bangert, J.A., Hilton, J.L.: The Astronomical Almanac 2006: Changes Resulting from IAU Resolutions. In: Bull. Am. Astron. Soc. Meeting 207, #25.05 (2005)

  91. Van Flandern T. (1998). The speed of gravity - What the experiments say. Phys. Lett. A 250: 1

    Article  ADS  Google Scholar 

  92. Van Flandern T. and Vigier J.P. (2002). Experimental Repeal of the Speed Limit for Gravitational, Electrodynamic and Quantum Field Interactions. Found. Phys 32: 1031

    Article  Google Scholar 

  93. Wald R.M. (1984). General Relativity. The University of Chicago Press, Chicago

    MATH  Google Scholar 

  94. Wex N. and Kopeikin S.M. (1999). Frame Dragging and Other Precessional Effects in Black Hole Pulsar Binaries. Astrophys. J. 514: 388

    Article  ADS  Google Scholar 

  95. Will C.M. (1993). Theory and Experiment in Gravitational Physics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  96. Will, C.M.: (2001) The Confrontation between General Relativity and Experiment. Living Rev. Relativity 4, 4. URL (cited on July 16, 2005): http://www.livingreviews.org/lrr-2001-4

  97. Will C.M. (2003). Covariant calculation of general relativistic effects in an orbiting gyroscope experiment. Phys. Rev. D 67: 062003

    Article  ADS  Google Scholar 

  98. Will C.M.: Has the speed of gravity been measured? (cited on July 14, 2007) http://www.wugrav.wustl.edu/people/CMW/SpeedofGravity.html (2005)

  99. Wittman, D.: In: Courbin, F., Minniti, D. (eds.) Gravitational Lensing: An Astrophysical Tool. Springer-Verlag, Berlin, pp. 55–95 (2002)

  100. Zakharov V.D. (1973). Gravitational Waves in Einstein’s Theory. Halsted Press, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei M. Kopeikin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopeikin, S.M., Fomalont, E.B. Gravimagnetism, causality, and aberration of gravity in the gravitational light-ray deflection experiments. Gen Relativ Gravit 39, 1583–1624 (2007). https://doi.org/10.1007/s10714-007-0483-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0483-6

Keywords

Navigation