Skip to main content

Advertisement

Log in

Structure and State of Stress of the Chilean Subduction Zone from Terrestrial and Satellite-Derived Gravity and Gravity Gradient Data

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

It is well known that the quality of gravity modelling of the Earth’s lithosphere is heavily dependent on the limited number of available terrestrial gravity data. More recently, however, interest has grown within the geoscientific community to utilise the homogeneously measured satellite gravity and gravity gradient data for lithospheric scale modelling. Here, we present an interdisciplinary approach to determine the state of stress and rate of deformation in the Central Andean subduction system. We employed gravity data from terrestrial, satellite-based and combined sources using multiple methods to constrain stress, strain and gravitational potential energy (GPE). Well-constrained 3D density models, which were partly optimised using the combined regional gravity model IMOSAGA01C (Hosse et al. in Surv Geophys, 2014, this issue), were used as bases for the computation of stress anomalies on the top of the subducting oceanic Nazca plate and GPE relative to the base of the lithosphere. The geometries and physical parameters of the 3D density models were used for the computation of stresses and uplift rates in the dynamic modelling. The stress distributions, as derived from the static and dynamic modelling, reveal distinct positive anomalies of up to 80 MPa along the coastal Jurassic batholith belt. The anomalies correlate well with major seismicity in the shallow parts of the subduction system. Moreover, the pattern of stress distributions in the Andean convergent zone varies both along the north–south and west–east directions, suggesting that the continental fore-arc is highly segmented. Estimates of GPE show that the high Central Andes might be in a state of horizontal deviatoric tension. Models of gravity gradients from the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite mission were used to compute Bouguer-like gradient anomalies at 8 km above sea level. The analysis suggests that data from GOCE add significant value to the interpretation of lithospheric structures, given that the appropriate topographic correction is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amante C, Eakins BW (2009) ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24, 19 pp, March 2009

  • ANCORP Working Group (2003) Seismic imaging of a convergent continental margin and plateau in the central Andes (Andean Continental Research Project 1996 (ANCORP’96)). J Geophys Res 108:2328. doi:10.1029/2002JB001771,B7

    Google Scholar 

  • Andersen OB, Knudsen P (1998) Global marine gravity field from the ERS-1 and GEOSAT geodetic mission altimetry. J Geophys Res 103:8129–8137

    Article  Google Scholar 

  • Babeyko AY, Sobolev SV (2008) High-resolution numerical modelling of stress distribution in visco-elasto-plastic subducting slabs. Lithos 103:205–216. doi:10.1016/j.lithos.2007.09.015

    Article  Google Scholar 

  • Bejar-Pizarro M, Socquet A, Armijo R, Carrizo D, Genrich J, Simons M (2013) Andean structural control in interseismic coupling in the North Chile subduction zone. Nat Geosci 6:462–467. doi:10.1038/ngeo1802

    Article  Google Scholar 

  • Bonnardot MA, Hassani R, Tric E, Ruellan E, Régnier M (2008) Effect of margin curvature on plate deformation in a 3-D numerical model of subduction zones. Geophys J Int 173:1084–1094. doi:10.1111/j.1365-246X.2008.03752.x

    Article  Google Scholar 

  • Boutelier DA, Oncken O (2010) Role of the plate margin curvature in the plateau buildup: consequences for the central Andes. J Geophys Res 115:B04402. doi:10.1029/2009JB006296

    Google Scholar 

  • Braitenberg C, Mariani P, Pivetta T (2011) GOCE observations in exploration geophysics. In: Ouwehand L (ed) Proceedings of 4th Int GOCE User Workshop, Munich, Germany, Mar 31—Apr 1, 2011, ESA SP-696, ISBN 978-92-9092-260-5. European Space Agency, Noordwijk

  • Coblentz DD, Richardson RM, Sandiford M (1994) On the gravitational potential of the Earth’s lithosphere. Tectonics 13(4):929–945. doi:10.1029/94TC01033

    Article  Google Scholar 

  • Comte D, Pardo M, Dorbath L, Haessler H, Rivera L, Cisternas A, Ponce L (1994) Determination of seismogenic interplate contact zone and crustal seismicity around Antofagasta, Northern Chile using local data. Geophys J Int 116:553–561. doi:10.1111/j.1365-246X.1994.tb03279.x

    Article  Google Scholar 

  • Dahlen FA (1984) Noncohesive critical Coulomb wedges: an exact solution. J Geophys Res 89(B12):10125–10133. doi:10.1029/JB089iB12p10125

    Article  Google Scholar 

  • Drinkwater MR, Floberghagen R, Haagmans R, Muzi D, Popescu A (2003) GOCE: ESA’s first Earth Explorer Core mission. In: Beutler G, Drinkwater MR, Rummel R, von Steiger R (eds) Earth gravity field from space—from Sensors to earth sciences. Space Sciences Series of ISSI, 17:419–432, Kluwer Academic Publishers, Dordrecht. ISBN: 1-4020-1408-2

  • Flesch LM, Kreemer C (2010) Gravitational potential energy and regional stress and strain rate fields for continental plateaus: examples from the central Andes and Colorado Plateau. Tectonophysics 482:182–192. doi:10.1016/j.tecto.2009.07.014

    Article  Google Scholar 

  • Förste C, Bruinsma SL, Flechtner F et al (2012) A preliminary update of the Direct Approach GOCE Processing and a new release of EIGEN-6C. AGU 2012 Fall Meeting (San Francisco, USA 2012)

  • Forsyth D, Uyeda S (1975) On the relative importance of the driving forces of plate motion. Geophys J Int 43(1):163–200. doi:10.1111/j.1365-246X.1975.tb00631.x

    Article  Google Scholar 

  • Ghosh A, Holt W, Flesch LM, Haines AJ (2006) Gravitational potential energy of the Tibetan Plateau and the forces driving the Indian plate. Geology 34(5):321–324. doi:10.1130/G22071.1

    Article  Google Scholar 

  • Götze HJ, Kirchner A (1997) Interpretation of gravity and geoid in the Central Andes between 20 and 29 S. J South Am Earth Sci 10:179–188. doi:10.1016/S0895-9811(97)00014-X

    Article  Google Scholar 

  • Götze HJ, Lahmeyer B, Schmidt S, Strunk S, Araneda M (1990) Central Andes gravity data base. EOS Trans AGU 71(16):401–407. doi:10.1029/90EO00148

    Article  Google Scholar 

  • Götze HJ, Meurers B, Schmidt S, Steinhauser P (1991) On the isostatic state of the Eastern Alps and the Central Andes—a statistical comparison. In: Harmon RS, Rapela CW (eds) Andean magmatism and its tectonic setting. Geol Soc Am Special Paper 265:279–290

  • Götze HJ, Lahmeyer B, Schmidt S, Strunk S (1994) The lithospheric structure of the Central Andes (20–26 S) as inferred from interpretation of regional gravity. In: Reutter KJ, Scheuber E, Wigger PJ (eds) Tectonics of the Southern Central Andes—structure and evolution of an active continental margin. Springer, Berlin

    Google Scholar 

  • Gregory-Wodzicki KM (2000) Uplift history of the Central and Northern Andes: a review. Geol Soc Am Bull 112(7):1091–1105. doi:10.1130/0016-7606(2000)112<1091:UHOTCA>2.0.CO;2

    Article  Google Scholar 

  • Grombein T, Seitz K, Heck B (2011) Modelling topographic effects in GOCE gravity gradients. In: Münch U, Dransch W (eds) Observation of the System Earth from Space, GEOTECHNOLOGIEN Science Report 17:84–93. doi:10.2312/GFZ.gt.17.13

  • Grombein T, Seitz K, Heck B (2014a) Topographic-isostatic reduction of GOCE gravity gradients. In: Rizos C, Willis P (eds) Earth on the edge: science for a sustainable planet, Proc IAG Gen Assem, Melbourne, Australia, Jun 28—Jul 2, 2011. Int Assoc Geodes Symposia 139:349–356, Springer, Berlin. doi:10.1007/978-3-642-37222-3_46

  • Grombein T, Luo X, Seitz K, Heck B (2014b) A wavelet-based assessment of topographic-isostatic reductions for GOCE gravity gradients. Surv Geophys. doi:10.1007/s10712-014-9283-1 (Online First)

    Google Scholar 

  • Gutknecht B (2011) Lithospheric modelling by using optimized GOCE gravity gradient data. In: Ouwehand L (ed) Proceedings of 4th Int GOCE User Workshop, Munich, Germany, Mar 31—Apr 1, 2011, ESA SP-696, ISBN 978-92-9092-260-5. European Space Agency, Noordwijk

  • Hampel A, Pfiffner A (2006) Relative importance of trenchward upper plate motion and friction along the plate interface for the topographic evolution of subduction-related mountain belts. In: Buiter SJH, Schreurs G (eds) Analogue and numerical modelling of crustal-scale processes. Geol Soc, London, Special Publication, 253:105–115. doi:10.1144/GSL.SP.2006.253.01.05

  • Haschke M, Scheuber E, Günther A, Reutter KJ (2002) Evolutionary cycles during the Andean orogeny: repeated slab breakoff and flat subduction? Terra Nova 14:49–55. doi:10.1046/j.1365-3121.2002.00387.x

    Article  Google Scholar 

  • Heidbach O, Tingay M, Barth A, Reinecker J, Kurfeß D, Müller B (2008) The World Stress Map database release 2008. doi:10.1594/GFZ.WSM.Rel2008

  • Hosse M, Pail R, Horwath M, Holzrichter N, Gutknecht BD (2014) Combined regional gravity model of the Andean convergent subduction zone and its application to lithospheric modelling in active plate margins. Surv Geophys (this issue)

  • Husen S (1999) Local earthquake tomography of a convergent margin, North Chile: a combined on-and offshore study. Dissertation, Kiel University

  • Husen S, Kissling E, Flueh E, Asch G (1999) Accurate hypocentre determination in the seismogenic zone of the subducting Nazca plate in northern Chile using a combined on-/offshore network. Geophys J Int 138(3):687–701. doi:10.1046/j.1365-246x.1999.00893.x

    Article  Google Scholar 

  • Jones CH, Unruh JR, Sonder LJ (1996) The role of gravitational potential energy in active deformation in the southwestern United States. Nature 381:37–41

    Article  Google Scholar 

  • Kendrick, E, Bevis MG, Smalley R, Brooks BA (2001) An integrated crustal velocity field for the central Andes, Geochem Geophys Geosyst 2(11). doi:10.1029/2001GC000191

  • Köther N, Götze HJ, Gutknecht BD, Jahr T, Jentzsch G, Lücke OH, Mahatsente R, Sharma R, Zeumann S (2012) The seismically active Andean and Central American margins: can satellite gravity map lithospheric structures? J Geodyn 59–60:207–218. doi:10.1016/j.jog.2011.11.004

    Article  Google Scholar 

  • Kukowski N, Oncken O (2006) Subduction Erosion—the “Normal” Mode of Fore-Arc Material Transfer along the Chiean Margin? In: Oncken O, Chong G, Franz G, Giese P, Götze HJ, Ramos VA, Strecker M,Wigger P (eds) The Andes: active subduction orogeny, Frontiers in Earth Science Series, Springer, Berlin, pp 217–236. doi:10.1007/978-3-540-48684-8_10

  • Lamb S, Davis P (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425:792–797. doi:10.1038/nature02049

    Article  Google Scholar 

  • Lithgow-Bertelloni C, Richards MA (1998) The dynamics of Cenozoic and Mesozoic plate motions. Rev Geophys 36(1):27–78. doi:10.1029/97RG02282

    Article  Google Scholar 

  • Liu M., Yang Y, Stein S, Klosko E (2002) Crustal shortening and extension in the Central Andes: insights from a viscoelastic model. In: Stein S, Freymueller JT (eds) Plate Boundary Zones, American Geophysical Union, Geodyn Ser 30:325–339. doi:10.1029/030GD19

  • Mahatsente R, Ranalli G, Bolte D, Götze HJ (2012) On the relation between lithospheric strength and ridge push transmission in the Nazca plate. J Geodyn 53:18–26. doi:10.1016/j.jog.2011.08.002

    Article  Google Scholar 

  • Métois M, Socquet A, Vigny C, Carrizo D, Peyrat S, Delorme A, Maureira E, Valderas-Bermejo MC, Ortega I (2013) Revisiting the North Chile seismic gap segmentation using GPS-derived interseismic coupling. Geophys J Int 194(3):1283–1294. doi:10.1093/gji/ggt183

    Article  Google Scholar 

  • Mayer-Guerr T, Rieser D, Höck E, Brockmann JM, Schuh WD, Krasbutter I, Kusche J, Maier A, Krauss S, Hausleitner W, Baur O, Jäggi A, Meyer U, Prange L, Pail R, Fecher T, Gruber T (2012) The new combined satellite only model GOCO03s. International Symposium on Gravity, Geoid and Height Systems GGHS 2012, Venice, Italy, S2-183

  • Novák P, Tenzer R (2013) Gravitational gradients at satellite altitudes in global geophysical studies. Surv Geophys 34(5):653–673. doi:10.1007/s10712-013-9243-1

    Article  Google Scholar 

  • Ortlieb L, Zazs C, Goy JL, Hillaire-Marcel C, Ghaleb B, Cournoyer L (1996) Coastal deformation and sea-level changes in the northern Chile subduction area (23S) during the last 330 ky. Quat Sci Rev 15:819–831, ISSN 0277-3791. doi:10.1016/S0277-3791(96)00066-2

  • Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh WD, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansó F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geod 85(11):819–843. doi:10.1007/s00190-011-0467-x

    Article  Google Scholar 

  • Pascal C, Cloetingh SAPL (2009) Gravitational potential stresses and stress field of passive continental margins: insights from the south-Norway shelf. Earth Planet Sci Lett 277:464–473. doi:10.1016/j.epsl.2008.11.014

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117(B4). doi:10.1029/2011JB008916

  • Pichowiak S (1994) Early Jurassic to Cretaceous magmatism in the coastal cordillera and the central depression of North Chile. In: Reutter KJ, Scheuber E, Wigger PJ (eds) Tectonics of the Southern Central Andes—structure and evolution of an active continental margin, Springer, pp 203–217. doi:10.1007/978-3-642-77353-2_14

  • Prezzi C, Götze HJ, Schmidt S (2009) 3D density model of the Central Andes. Phys Earth Planet Inter 177(3–4):217–234. doi:10.1016/j.pepi.2009.09.004

    Article  Google Scholar 

  • Pritchard ME, Norabuena EO, Ji C, Boroschek R, Comte D, Simons M, Dixon TH, Rosen PA (2007) Geodetic, teleseismic and strong motion constraints on slip from recent southern Peru subduction zone earthquakes. J Geophys Res Solid Earth 112:B03307. doi:10.1029/2006JB004294

    Article  Google Scholar 

  • Schmidt S, Götze HJ, Fichler C, Alvers M (2010) IGMAS+—a new 3D Gravity, FTG and Magnetic Modelling Software. In: Zipf A, Behncke K, Hillen F, Schefermeyer J (eds) GEOINFORMATIK 2010 “Die Welt im Netz”. Akademische Verlagsgesellschaft AKA GmbH, Heidelberg, pp 57–63. ISBN 978-3-89838-335-6

    Google Scholar 

  • Schurr B, Rietbrock A, Asch G, Kind R, Oncken O (2006) Evidence for lithospheric detachment in the central Andes from local earthquake tomography. Tectonophysics 415(1):203–223. doi:10.1016/j.tecto.2005.12.007

    Article  Google Scholar 

  • Schurr B, Asch G, Rosenau M, Wang R, Oncken O, Barrientos S, Salazar P, Vilotte JP (2012) The 2007 M7.7 Tocopilla northern Chile earthquake sequence: implications for along-strike and down dip rupture segmentation and megathrust frictional behaviour. J Geophys Res 117:B05305. doi:10.1029/2011JB009030

    Google Scholar 

  • Silver PG, Russo RM, Lithgow-Bertelloni C (1998) Coupling of South American and African plate motion and plate deformation. Science 279(5347):60–63. doi:10.1126/science.279.5347.60

    Article  Google Scholar 

  • Sobiesiak M (2000) Fault plane structure of the Antofagasta, Chile Earthquake of 1995. Geophys Res Let 27(4):577–580. doi:10.1029/1999GL010498

    Article  Google Scholar 

  • Sobiesiak M, Meyer U, Schmidt S, Götze HJ, Krawczyk C (2007) Asperity generating upper crustal sources revealed by b value and isostatic residual anomaly grids in the area of Antofagasta Chile. J Geophys Res Solid Earth 112:B12308. doi:10.1029/2006JB004796

    Article  Google Scholar 

  • Sobolev SV, Babeyko AY (2005) What drives orogeny in the Andes? Geology 33(8):617–620. doi:10.1130/G21557AR.1

    Article  Google Scholar 

  • Somoza R (1998) Updated Nazca (Farallon)—South America relative motions during the last 40 My: implications for mountain building in the central Andean region. J S Am Earth Sci 11(3):211–215

    Article  Google Scholar 

  • Song TRA, Simons M (2003) Large trench-parallel gravity variations predict seismogenic behavior in subduction zones. Science 301(5633):630–633. doi:10.1126/science.1085557

    Article  Google Scholar 

  • Tassara A (2005) Interaction between the Nazca and South American plates and formation of the Altiplano-Puna plateau: review of a flexural analysis along the Andean margin (15°–34°S). Tectonophysics 399(1–4):39–57

    Article  Google Scholar 

  • Tassara A (2010) Control of forearc density structure on megathrust shear strength along the Chilean subduction zone. Tectonophysics 495:34–47. doi:10.1016/j.tecto.2010.06.004

    Article  Google Scholar 

  • Tassara A, Götze HJ, Schmidt S, Hackney R (2006) Three-dimensional density model of the Nazca plate and the Andean continental margin. J Geophys Res Solid Earth 111:2156–2202. doi:10.1029/2005JB003976

    Article  Google Scholar 

  • Tichelaar BW, Ruff LJ (1991) Seismic coupling along the Chilean Subduction Zone. J Geophys Res 96(B7):11997–12022. doi:10.1029/91JB00200

    Article  Google Scholar 

  • Wells RE, Blakely RJ, Sugiyama Y, Scholl DW, Dinterman PA (2003) Basin-centered asperities in great subduction zone earthquakes: a link between slip, subsidence, and subduction erosion? J Geophys Res Solid Earth 108(2507):B10. doi:10.1029/2002JB002072

    Google Scholar 

  • Wessel P, Müller RD (2007) 6.02—Plate tectonics. In: Schubert G (ed) Treatise on geophysics, Elsevier, Amsterdam, pp 49–98, ISBN 9780444527486. doi:10.1016/B978-044452748-6.00101-2

  • Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Trans Am Geophys Union 72(41):441–446. doi:10.1029/90EO00319

    Article  Google Scholar 

  • Witze A (2014) Chile quake defies expectations. Nature 508:440–441. doi:10.1038/508440a

    Article  Google Scholar 

  • Zeumann S, Sharma R, Gassmöller R, Jahr T, Jentzsch G (2014) New Finite-Element modelling of subduction processes in the Andes using realistic geometries. In: Rizos C, Willis P (eds) Earth on the edge: science for a sustainable planet, international association of geodesy symposia, 139:105–111, Springer, Berlin. ISBN:978-3-642-37221-6. doi:10.1007/978-3-642-37222-3_13

  • Zienkiewicz OC, Taylor RL, Zhu JZ, Nithiarasu P (2005) The finite element method, Butterworth-Heinemann

Download references

Acknowledgments

This work has been financed by the German Research Council (DFG) in the priority programme SPP1257 ‘Mass transport and mass distribution’ (GO 380/27-2, JE 107/57-2, PA 1543/2-2). We acknowledge the valuable comments provided by the two anonymous reviewers and guest editor Volker Klemann. We thank our project partners at TU München, Roland Pail, Michael Hosse and Martin Horwath, for fruitful discussions and for providing geopotential models. We thank Rekha Sharma for her contribution to the initial manuscript. We used GMT (Wessel and Smith 1991) for many of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Gutknecht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutknecht, B.D., Götze, HJ., Jahr, T. et al. Structure and State of Stress of the Chilean Subduction Zone from Terrestrial and Satellite-Derived Gravity and Gravity Gradient Data. Surv Geophys 35, 1417–1440 (2014). https://doi.org/10.1007/s10712-014-9296-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-014-9296-9

Keywords

Navigation