Skip to main content
Log in

Earth System Mass Transport Mission (e.motion): A Concept for Future Earth Gravity Field Measurements from Space

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

In the last decade, satellite gravimetry has been revealed as a pioneering technique for mapping mass redistributions within the Earth system. This fact has allowed us to have an improved understanding of the dynamic processes that take place within and between the Earth’s various constituents. Results from the Gravity Recovery And Climate Experiment (GRACE) mission have revolutionized Earth system research and have established the necessity for future satellite gravity missions. In 2010, a comprehensive team of European and Canadian scientists and industrial partners proposed the e.motion (Earth system mass transport mission) concept to the European Space Agency. The proposal is based on two tandem satellites in a pendulum orbit configuration at an altitude of about 370 km, carrying a laser interferometer inter-satellite ranging instrument and improved accelerometers. In this paper, we review and discuss a wide range of mass signals related to the global water cycle and to solid Earth deformations that were outlined in the e.motion proposal. The technological and mission challenges that need to be addressed in order to detect these signals are emphasized within the context of the scientific return. This analysis presents a broad perspective on the value and need for future satellite gravimetry missions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bamber J, Riva REM, Vermeersen BLA, LeBrocq AM (2009) Reassessment of the potential sea-level rise from a collapse of the West Antarctic ice sheet. Science 324:901–903. doi:10.1126/science.1169335

    Article  Google Scholar 

  • Barletta VR, Bordoni A (2009) Clearing observed PGR in GRACE data aimed at global viscosity inversion: weighted mass trends technique. Geophys Res Lett 36:L02305. doi:10.1029/2008GL036429

    Article  Google Scholar 

  • Barletta VR, Sabadini R, Bordoni A (2008) Isolating the PGR signal in the GRACE data: impact on mass balance estimates in Antarctica and Greenland. Geophys J Int 172:18–30. doi:10.1111/j.1365-246X.2007.03630.x

    Article  Google Scholar 

  • Beutler G, Rummel R, Drinkwater MR, von Steiger R (2003) Earth gravity field from space—from sensors to Earth sciences. Space Science series of ISSI 17. Kluwer, Dordrecht, ISBN: 1-4020-1408-2

  • Bingham RJ, Hughes CW (2008a) The relationship between sea-level and bottom pressure variability in an eddy-permitting ocean model. Geophys Res Lett 35:L03602. doi:10.1029/2007GL032662

    Article  Google Scholar 

  • Bingham RJ, Hughes CW (2008b) Determining North Atlantic meridional transport variability from pressure on the western boundary: a model investigation. J Geophys Res 114:C09008

    Article  Google Scholar 

  • Bingham RJ, Hughes CW (2009) Signature of the Atlantic meridional overturning circulation in sea level along the east coast of North America. Geophys Res Lett 36:L02603. doi:10.1029/2008GL036215

    Article  Google Scholar 

  • Cazenave A, Chen J (2010) Time-variable gravity from space and present-day mass redistribution in the earth system. Earth Planet Sci Lett 298:263–274. doi:10.1016/j.epsl.2010.07.035

    Article  Google Scholar 

  • Cazenave A, Llovel W (2010) Contemporary sea level rise. Ann Rev Mar Sci 2:145–173

    Article  Google Scholar 

  • Cazenave A et al (2009) Sea level budget over 2003–2008: a re-evaluation from GRACE space gravimetry, satellite altimetry and Argo. Glob Planet Change 65(1–2):83–88

    Article  Google Scholar 

  • Chambers DP, Tamisiea ME, Nerem RS, Ries JC (2007) Effects of ice melting on GRACE observations of ocean mass trends. Geophys Res Lett 34:L05610

    Article  Google Scholar 

  • Chen JL, Wilson CR, Tapley BD, Blankenship DD, Ivins ER (2007) Patagonia icefield melting observed by gravity recovery and climate experiment (GRACE). Geophys Res Lett 34:L22501. doi:10.1029/2007GL031871

    Article  Google Scholar 

  • Chen JL, Wilson CR, Blankenship D, Tapley BD (2009) Accelerated Antarctic ice loss from satellite gravity measurements. Nat Geosci. doi:10.1038/NGEO694

    Google Scholar 

  • de Viron O, Panet I, Mikhailov V, van Camp M, Diament M (2008) Retrieving earthquake signature in GRACE gravity solutions. Geophys J Int 174(1):14–20. doi:10.1111/j.1365-246X.2008.03807.x

    Article  Google Scholar 

  • Dickey J et al (1997) Satellite gravity and the geosphere. National Academy Press, Washington, DC

    Google Scholar 

  • Famiglietti JS, Lo M, Ho SL, Bethune J, Anderson KJ, Syed TH, Swenson SC, de Linage CR, Rodell M (2011) Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys Res Lett 38:L03403. doi:10.1029/2010GL046442

    Article  Google Scholar 

  • Flury J, Rummel R (2005) Future satellite gravimetry and earth dynamics. Springer, Dordrecht. ISBN 0-387-29796-0

    Google Scholar 

  • Frappart F, G Ramillien (2012) Contribution of GRACE satellite gravimetry in global and regional hydrology and in ice sheets mass balance. In: Nayak P (ed) Water resources management and modeling, chap 9

  • Garzoli S, Boebel O, Bryden H, Fine R, Fukusawa M, Gladyshev S, Johnson G, Johnson M, MacDonald A, Meinen C, Mercier H, Orsi A, Piola A, Rintoul S, Speich S, Visbeck M, Wanninkhof R (2010) Progressing towards global sustained deep ocean observations. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs ‘09: sustained ocean observations and information for society, Venice, Italy, 21–25 September 2009, ESA publication WPP-306. doi:10.5270/OceanObs09.cwp.34

  • Güntner A (2008) Improvement of global hydrological models using GRACE data. Surv Geophys 29:375–397. doi:10.1007/s10712-008-9038-y

    Article  Google Scholar 

  • Hager BH (1991) Mantle viscosity—a comparison of models from postglacial rebound and from the geoid, plate driving forces, and advected heat flux. In: Sabadini R, Lambeck K, Boschi E (eds) Glacial isostasy, sea level and mantle rheology. Kluwer, Dordrecht, pp 493–513

    Chapter  Google Scholar 

  • Han SC, Shum CK, Bevis M, Ji C, Kuo C-Y (2006) Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake. Science 313:658

    Article  Google Scholar 

  • Hughes CW, de Cuevas BA (2001) Why western boundary currents in realistic oceans are inviscid: a link between form stress and bottom pressure torques. J Phys Oceanogr 31:2871–2885. doi:10.1175/1520-0485

    Article  Google Scholar 

  • Hegerl GC et al (2007) Understanding and attributing climate change. In: Solomon S et al (eds) IPCC Climate Change 2007: the physical science basis. Cambridge University Press, Cambridge

  • Jekeli C (1981) Alternative methods to smooth the Earth’s gravity field. Rep. 327, Department of Geod Sci and Surv, Ohio State University, Columbus

  • Johannessen J, e.motion Science Team (2010) Earth system mass transport mission, proposal for earth explorer opportunity mission EE8. In response to the call for proposals for earth explorer opportunity mission EE8 (ESA/EXPLORER/COM-3/EE-8 Oct 2009)

  • Koop R, Rummel R (2008) The future of satellite gravimetry. In: Report from the workshop on the future of satellite gravimetry, 1–13 April 2007. ESTEC, Noordwijk, The Netherlands; Institute of Advanced Study, TU Münich

  • Kusche J, Klemann V, Bosch W (2012) Mass distribution and mass transport in the earth system. J Geodyn. doi:10.1016/j.jog.2012.03.003

    Google Scholar 

  • Lemke P et al (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S et al (eds) IPCC Climate Change 2007: the physical science basis. Cambridge University Press, Cambridge

  • Lettenmaier D, Famiglietti J (2006) Water from on high. Nature 444:562–563

    Article  Google Scholar 

  • Loomis BD, Nerem RS, Luthcke SB (2011) Simulation study of a follow-on gravity mission to GRACE. J Geodesy. doi:10.1007/s00190-011-0521-8

    Google Scholar 

  • Meier MF, Dyurgerov MB, Rick UK, O’Neel S, Pfeffer WT et al (2007) Glaciers dominate Eustatic sea-level rise in the 21st century. Science 317:1064–1067

    Article  Google Scholar 

  • Mikhailov V, Tikhotsky S, Diament M, Panet I, Ballu V (2004) Can tectonic processes be recovered from new satellite gravity data? Earth Planet Sci Lett 228:281–297

    Article  Google Scholar 

  • Milne GA, Gehrels WR, Hughes CW, Tamisiea ME (2009) Identifying the causes of sea-level change. Nat Geosci 2:471–478

    Article  Google Scholar 

  • Mitrovica JX, Forte AM (1997) Radial profile of mantle viscosity: results from the joint inversion of convection and post-glacial rebound observables. J Geophys Res 102(B2):2751–2770

    Article  Google Scholar 

  • Oki T, Sud Y (1998) Design of total runoff integrating pathways (TRIP)—a global river channel network. Earth Interact 2(1):1–36

    Article  Google Scholar 

  • Pail R et al (2011) First GOCE gravity field models derived by three different approaches. J Geodesy 85:819–843. doi:10.1007/s00190-011-0467-x

    Article  Google Scholar 

  • Panet I, Pollitz F, Mikhailov V, Diament M, Banerjee P, Grijalva K (2010) Upper mantle rheology from GRACE and GPS post-seismic deformation after the 2004 Sumatra-Andaman earthquake. Geochem Geophys Geosyst 11(6):Q06008. doi:10.1029/2009GC002905

    Article  Google Scholar 

  • Paulson A, Zhong S, Wahr J (2007) Inference of mantle viscosity from GRACE and relative sea level data. Geophys J Int 171:497–508

    Article  Google Scholar 

  • Plag H-P, Pealrman M (2009) Global geodetic observing system, meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin. ISBN 978-3-642-02686-7

    Book  Google Scholar 

  • Pollitz F, Wicks C, Thatcher W (2001) Mantle flow beneath a continental strike-slip fault: post-seismic deformation after the 1999 Hector Mine earthquake. Science 293:1814–1818

    Article  Google Scholar 

  • Pritchard HD, Ligtenberg SRM, Fricker HA, Vaughan DG, van den Broeke MR, Padman L (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484:502–505. doi:10.1038/nature10968

    Article  Google Scholar 

  • Ramillien G, Famiglietti J, Wahr J (2008) Detection of continental hydrology and glaciology signals from GRACE: a review. Surv Geophys. doi:10.1007/s10712-008-9048-9

    Google Scholar 

  • Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland ice sheet. Science 311(5763):986–990. doi:10.1126/science.1121381

    Article  Google Scholar 

  • Rignot E, Thomas RH (2002) Mass balance of polar ice sheets. Science 297:1502–1506. doi:10.1126/science.1073888

    Article  Google Scholar 

  • Rignot E, Bamber JL, Van Den Broeke MR, Davis C, Li Y, Van De Berg WJ, Van Meijgaard E (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat Geosci 1(2):106–110

    Article  Google Scholar 

  • Rodell M, Famiglietti JS (1999) Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Resour Res 35:2705–2724. doi:10.1029/1999WR900141

    Article  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti J (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002. doi:10.1038/nature08238

    Article  Google Scholar 

  • Roussenov V, Williams RG, Hughes CW, Bingham R (2008) Boundary wave communication of bottom pressure and overturning changes for the North Atlantic. J Geophys Res 114:C08042. doi:10.1029/2007JC004501

    Article  Google Scholar 

  • Rummel R (2005) Geoid and gravity in earth sciences—an overview. Earth Moon Planet 94(1–2):3–11. doi:10.1007/s11038-005-3755-8

    Google Scholar 

  • Rummel R (2011) GOCE gravitational gradiometry. J Geodesy 85:777–790. doi:10.1007/s00190-011-0500-0

    Article  Google Scholar 

  • Sasgen I, Dobslaw H, Martinec Z, Thomas M (2010) Satellite gravimetry observation of Antarctic snow accumulation related to ENSO. Earth Planet Sci Lett 299(3–4):352–358

    Article  Google Scholar 

  • Sasgen I, Klemann V, Martinec Z (2012) Toward the inversion of GRACE gravity fields for present-day ice-mass changes and glacial-isostatic adjustment in North America and Greenland. J Geodyn. doi:10.1016/j.jog.2012.03.004

    Google Scholar 

  • Schmidt R, Schwintzer P, Flechtner F, Reigber C, Güntner A, Döll P, Ramillien G, Cazenave A, Petrovic S, Jochmann H et al (2006) GRACE observations of changes in continental water storage. Glob Planet Change 50:112–126

    Article  Google Scholar 

  • Schmidt R, Flechtner F, Meyer U, Neumayer K-H, Dahle C, König R, Kusche J (2008) Hydrological signals observed by the GRACE satellites. Surv Geophys 29:319–334. doi:10.1007/s107/12-008-9033-3

    Article  Google Scholar 

  • Send U, Burkill P, Gruber N, Johnson GC, Körtzinger A, Koslow T, O’Dor R, Rintoul S, Roemmich D, Wijffels S (2010) Towards an integrated global observing system: in-situ observations. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs ‘09: sustained ocean observations and information for society, Venice, Italy, 21–25 September 2009, ESA publication WPP-306. doi:10.5270/OceanObs09.pp.35

  • Seo KW, Wilson CR (2005) Simulated estimation of hydrological loads from GRACE. J Geodesy 78:442–456. doi:10.1007/s00190-004-0410-5

    Article  Google Scholar 

  • Sheard B, Heinzel G, Danzmann K, Shaddock DA, Klipstein WM, Folkner WM (2012) Intersatellite laser ranging instrument for the GRACE follow-on mission. J Geodesy. doi:10.1007/s00190-012-0566-3

    Google Scholar 

  • Sneuuw N, Flury J, Rummel R (2005) Science requirements on future missions and simulated mission scenarios. Earth Moon Planet 94:113–142

    Article  Google Scholar 

  • Swenson S, Wahr J (2002) Methods for inferring regional surface-mass anomalies from GRACE measurements of time-variable gravity. J Geophys Res 107(B9):2193. doi:10.1029/2001JB000576

    Article  Google Scholar 

  • GCOS (Global Climate Observing System) (2003) The second report on the adequacy of the global observing systems for climate in support of the UNFCCC. GCOS report 82. WMO/TD-no. 1143

  • GCOS (Global Climate Observing System) (2006) Systematic observation requirements for satellite-based products for climate. GCOS report 107, WMO/TD-no. 1338

  • Tamisiea ME (2011) Ongoing glacial isostatic contributions to observations of sea level change. Geophys J Int 186:1036–1044. doi:10.1111/j.1365-246X.2011.05116.x

    Article  Google Scholar 

  • Tamisiea ME, Leuliette EW, Davis JL, Mitrovica JX (2005) Constraining hydrological and cryospheric mass flux in southeastern Alaska using space-based gravity measurements. Geophys Res Lett 32:L20501. doi:10.1029/2005GL023961

    Article  Google Scholar 

  • Tamisiea ME, Mitrovica JX, Davis JL (2007) GRACE gravity data constrain ancient ice geometries and continental dynamics over Laurentia. Science 316:881. doi:10.1126/science.1137157

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607. doi:10.1029/2004GL019920

    Article  Google Scholar 

  • Van den Broeke MR, Bamber J, Ettema J, Rignot E, Schrama E, van de Berg WJ, van Meijgaard E, Velicogna I, Wouters B (2009) Partitioning recent Greenland mass loss. Science 326:984–986

    Article  Google Scholar 

  • Van der Wal W, Wu P, Sideris MG, Shum CK (2008) Use of GRACE determined secular gravity rates for glacial isostatic adjustment studies in North-America. J Geodyn 46(3–5):144–154

    Google Scholar 

  • Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36:L19503. doi:10.1029/2009GL040222

    Article  Google Scholar 

  • Vermeersen BLA (2005) Challenges from solid earth dynamics for satellite gravity field missions in the post-GOCE era. Earth Moon Planet 94:31–40. doi:10.1007/s11038-004-6816-5

    Article  Google Scholar 

  • Visser PNAM, Sneuuw N, Reubelt T, Losch M, van Dam T (2010) Space-borne gravimetric satellite constellations and ocean tides: aliasing effects. Geophys J Int 181:789–805. doi:10.1111/j.1365-246X.2010.04557.x

    Google Scholar 

  • Wahr J, Davis JL (2002) Geodetic constraints on glacial isostatic adjustment. In: Mitrovica JX, Vermeersen LLA (eds) Ice sheets, sea level and the dynamic earth, geodynamic series, vol 29. AGU, Washington, DC, pp 2–32

    Google Scholar 

  • Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103:30205–30230. doi:10.1029/98JB02844

    Article  Google Scholar 

  • Wiese D, Nerem R, Lemoine F (2012) Design configurations for a dedicated gravity recovery satellite mission consisting of two pairs of satellites. J Geodesy 86(2):81–98. doi:10.1007/s00190-011-0493-8

    Article  Google Scholar 

  • Wouters B, Chambers D, Schrama EJO (2008) GRACE observes small-scale mass loss in Greenland. Geophys Res Lett 35:L20501. doi:10.1029/2008GL034816

    Article  Google Scholar 

  • Wu P, Peltier WR (1983) Glacial isostatic adjustment and the free air gravity anomaly as a constraint on deep mantle viscosity. Geophys J R Astron Soc 74:377–450

    Google Scholar 

  • Zlotnicki V, Wahr J, Fukumori I, Song Y-T (2007) Antarctic circumpolar current transport variability during 2003–2005 from GRACE. J Phys Oceanogr 37(2):230–244

    Article  Google Scholar 

  • Zwally HJ, Abdalati W, Herring T, Larson K, Saba J, Steffen K (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297:218–222. doi:10.1126/science.1072708

    Article  Google Scholar 

Download references

Acknowledgments

This paper is based on the comprehensive work and analysis realized to prepare the e.motion proposal, in response to the European Space Agency Call for proposals Earth Explorer Opportunity Mission EE-8. As such, the results presented here greatly benefited from numerous inputs and discussions with the members of the e.motion science team, listed in Appendix 3. We gratefully thank them for their contributions. Industrial support was provided from SpaceTech GmbH Immenstaad and from the Office National d’Études et de Recherches Aérospatiales. We thank Michel Diament for helping us to improve this manuscript. We are grateful to the Editor, Anny Cazenave, and two anonymous reviewers, for their suggestions that contributed to improve this manuscript. Work by Isabelle Panet, Richard Biancale, Pascal Gegout, and Guillaume Ramillien was supported by CNES (Centre National d’Etudes Spatiales) through the TOSCA committee. This is IPGP contribution number 3344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Panet.

Appendices

Appendix 1: Amplitude of Geoid Variations Associated with Local Water Loads

The amplitude of geoid variations associated with a water mass load depends on the spatial scale of this load, as shown in Wahr et al. (1998). Here, we computed the geoid effect of a water load spatially distributed as a Gaussian bell, with amplitude of 1 cm of equivalent water thickness at the center of the Gaussian. We considered the direct Newtonian attraction of the load and the Earth’s elastic deformation as given by the Love numbers. Results are provided in Table 2 for a Gaussian bell of varying radii r. The radius corresponds to the distance to the centre for which the water thickness has decreased by a factor of two. These results allow for easier conversions between EWH signals and geoid variations.

Table 2 Geoid effect of water loads with a spatial distribution as a Gaussian bell of varying radii

Appendix 2: Local Error Estimates

Earth system mass signals associated with various physical processes are most often local. This means that the estimates of the precision required to recover those signals should be local. Here we recall, following Dickey et al. (1997) and Wahr et al. (1998), how they are related to global spherical harmonics error spectra.

Let h(\( \theta ,\varphi , \)) denote the water height at the point of colatitude \( \theta \) and longitude \( \varphi \), and the average error over an area of interest. A localizing filter W(\( \theta ,\varphi \)) is associated with this area, describing its shape. However, because of the limited resolution of satellite gravity data, it is not possible to perfectly localize the target area, since an infinite number of spherical harmonics would be needed to build a perfect localizing filter, with a value of 1 inside the study area and 0 outside. Consequently, water height estimates from a truncated spherical harmonic spectrum will never be perfectly localized. Contrarily, a filter with a perfect spectral localization, such as that realized by a cumulative spherical harmonic spectrum, is associated with a highly oscillating spatial window. The construction of local basin filters is extensively discussed in the literature (e.g., Swenson and Wahr 2002; Seo and Wilson 2005).

Let us denote \( W_{lm}^{c} \), \( W_{lm}^{s} \) and \( h_{lm}^{c} \), \( h_{lm}^{s} \) the coefficients of the spherical harmonic expansion of the filter and the water height, respectively. The average water height within the approximate shape of the basin, resulting from the truncation at degree L of the spherical harmonic expansion of W, is given by:

$$ \bar{h} = \frac{1}{\Upomega }\int {h^{L} \left( {\theta ,\phi } \right) \cdot W^{L} \left( {\theta ,\phi } \right)} \cdot \sin \theta {\text{d}}\theta {\text{d}}\phi $$
(1)

where \( \Upomega \) is the solid angle subtended by the basin, equal to \( 4\pi \frac{{S_{\text{Area}} }}{{S_{\text{Earth}} }} \), where S Area is the surface of the area and S Earth the surface of the Earth. From the orthogonality of the spherical harmonics, one obtains the following equation:

$$ \bar{h} = \frac{1}{\Upomega }\sum\limits_{\ell = 0}^{L} {\sum\limits_{m = 0}^{\ell } {\left( {W_{\ell m}^{c} \cdot h_{\ell m}^{c} + W_{\ell m}^{s} \cdot h_{\ell m}^{s} } \right)} } $$
(2)

Now, let us denote \( \delta h_{lm}^{c} \) and \( \delta h_{lm}^{s} \) the errors on the spherical harmonics coefficients of the water height measured by a satellite gravity mission, and \( \sigma_{\ell }^{2} = \sum\limits_{m = 0}^{\ell } {\left( {\left( {\delta h_{\ell m}^{c} } \right)^{2} + \left( {\delta h_{\ell m}^{s} } \right)^{2} } \right)} \) the degree variance. To simplify the expressions, we suppose that \( \delta h_{lm}^{c} \) and \( \delta h_{{l^{'} m^{'} }}^{s} \) are uncorrelated for any degrees and orders, and \( \delta h_{lm}^{c} \) and \( \delta h_{{l^{'} m^{'} }}^{c} \) (\( \delta h_{lm}^{s} \) and \( \delta h_{{l^{'} m}}^{s} \), respectively) are uncorrelated if \( \ell \ne \ell^{'} \) or \( m \ne m^{'} \). We make the approximation that \( \left( {\delta h_{\ell m}^{c} } \right)^{2} = \left( {\delta h_{\ell m}^{s} } \right)^{2} = \frac{{\sigma_{\ell }^{2} }}{2\ell + 1} \). The variance on the average water height resulting from the errors \( \delta h_{lm}^{c} \) and \( \delta h_{lm}^{s} \) can then be written as follows:

$$ \text{var} \left( {\bar{h}} \right) = \frac{1}{{\Upomega^{2} }}\sum\limits_{\ell = 0}^{L} {\frac{{\sigma_{\ell }^{2} }}{2\ell + 1}\sum\limits_{m = 0}^{\ell } {\left( {\left( {W_{\ell m}^{c} } \right)^{2} + \left( {W_{\ell m}^{s} } \right)^{2} } \right)} } $$
(3)

Introducing the degree spectrum of the localizing filter \( W_{\ell }^{{}} = \sqrt {\sum\limits_{m = 0}^{\ell } {\left( {\left( {W_{\ell m}^{c} } \right)^{2} + \left( {W_{\ell m}^{s} } \right)^{2} } \right)} } \), we end up with:

$$ \text{var} \left( {\bar{h}} \right) = \frac{1}{{\Upomega^{2} }}\sum\limits_{\ell = 0}^{L} {\frac{{\sigma_{\ell }^{2} }}{2\ell + 1}W_{\ell }^{2} } $$
(4)

If we use a localizing window shaped as an axisymmetric Gaussian bell, then the spectrum W l is given in Wahr et al. (1998), based on Jekeli (1981). However, this Gaussian is normalized so that its global integral is equal to unity. Thus, to be used in Eq. (4), the W l coefficients given in equation (34) of Wahr et al. (1998) should be divided by the normalization factor \( \frac{b}{2\pi }\frac{1}{{1 - e^{ - 2b} }} \), with \( b = \frac{\ln \left( 2 \right)}{{1 - \cos \left( {r/a} \right)}} \), a the semi-major axis of the Earth’s ellipsoid (a = 6,378,136.46 m), and r the distance at the Earth’s surface for which the value of the Gaussian window is equal to half its maximum.

Appendix 3: The e.motion Science Team

J. Bamber1, R. Biancale2, M. van den Broeke3, T. van Dam4, K. Danzmann5, M. Diament6, H. Dobslaw7, F. Flechtner7, J. Flury8, P. Gegout2, T. Gruber9, A. Güntner7, G. Heinzel5, M. Horwath10, J. Huang11, C.W. Hughes12, A. Jäggi13, J. Johannessen14, P. Knudsen15, J. Kusche16, B. Legresy10, F. Migliaccio17, R. Pail9, I. Panet18,6, G. Ramillien2, M-H. Rio19, R. Sabadini20, I. Sasgen7, H. Savenije21, L. Seoane2, B. Sheard5, M. Sideris22, N. Sneeuw23, D. Stammer24, M. Thomas7, B. Vermeersen25, P. Visser25, S. Vitale26, P. Woodworth12

  • 1University of Bristol, Bristol Glaciology Centre, Bristol, United Kingdom

  • 2Observatoire Midi-Pyrénées, Groupe de Recherche de Géodésie Spatiale, Toulouse, France

  • 3Utrecht University, Institute for Marine and Atmospheric Research, Utrecht, The Netherlands

  • 4Université du Luxembourg, Faculté des Sciences, de la Technologie et de la Communication, Luxembourg

  • 5Max-Planck Institut für Gravitationsphysik, Albert-Einstein Institut, Hannover, Germany

  • 6Institut de Physique du Globe de Paris, Paris, France

  • 7German Research Centre for Geosciences (GFZ), Potsdam, Germany

  • 8Leibnitz Universität Hannover, Centre for Quantum Engineering and Space-Time Research, Hannover, Germany

  • 9Technische Universität München, Institut für Astronomische und Physikalische Geodäsie, Münich, Germany

  • 10Laboratoire d’Études en Géophysique et Océanographie Spatiales, Toulouse, France

  • 11National Resources Canada, Ottawa, Canada

  • 12National Oceanography Centre, Liverpool, United Kingdom

  • 13Universität Bern, Astronomisches Institut, Bern, Switzerland

  • 14Nansen Environmental and Remote Sensing Center, Bergen, Norway

  • 15Technical University of Denmark, National Space Institute, Copenhagen, Denmark

  • 16Universität Bonn, Institut für Geodäsie und Geoinformation, Bonn, Germany

  • 17Politecnico di Milano, Dipartimento di Ingegneria Idraulica, Ambientale, Infrastrutture Viarie, Rilevamento, Milano, Italy

  • 18Institut National de l’Information Géographique et Forestière, Marne-la-Vallée, France

  • 19Collecte Localisation Satellites, Ramonville-Saint-Agne, France

  • 20Università degli Studi di Milano, Milano, Italy

  • 21Delft University of Technology, Water Resources Section, Delft, The Netherlands

  • 22University of Calgary, Department of Geomatics Engineering, Calgary, Canada

  • 23Universität Stuttgart, Geodätisches Institut, Stuttgart, Germany

  • 24Universität Hamburg, Zentrum für Marine und Atmosphärische Wissenschaften, Hamburg, Germany

  • 25Delft University of Technology, Astrodynamics and Satellite Systems, Delft, The Netherlands

  • 26University of Trento, Department of Physics, Trento, Italy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panet, I., Flury, J., Biancale, R. et al. Earth System Mass Transport Mission (e.motion): A Concept for Future Earth Gravity Field Measurements from Space. Surv Geophys 34, 141–163 (2013). https://doi.org/10.1007/s10712-012-9209-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-012-9209-8

Keywords

Navigation