Ashour AA (1965) Electromagnetic induction in finite thin sheets. Quart J Mech Appl Math 18:73–86

CrossRefGoogle ScholarAvdeev DB, Kuvshinov AV, Pankratov OV, Newman GA (2000) 3D EM modeling using fast integral equation approach with Krylov subspaces accelerator. Extended abstracts book, vol 2, 62nd EAGE Conference & Technical Exhibition, Glasgow, Scotland, P-183

Avdeev DB, Kuvshinov AV, Pankratov OV, Newman GA (2002) Three-dimensional induction logging problems, part I: an integral equation solution and model comparisons. Geophysics 67:413–426

CrossRefGoogle ScholarBaumjohann W, Treumann R (1996) Basic space plasma physics. Imperial College Press, London

Google ScholarBeamish D, Hewson-Browne RC, Kendall PC, Malin SRC, Quinney DA (1980) Induction in arbitrarily shaped oceans IV: Sq for a simple oceans. Geophys J R Astr Soc 60:435–443

Google ScholarBullard EC, Parker RL (1970) Electromagnetic induction in the oceans. In: Maxwell AE (ed) The sea, vol 4, Chap 18. John Wiley, New York, pp 695–730

Chapman S (1951) The equatorial electrojet as detected from the abnormal electric current distribution above Huancayo and elsewhere. Arch Meteorol Geophys Bioklimatol Sec A4:368–390

CrossRefGoogle ScholarDuffus HJ, Fowler NR (1974) On planetary voltages, ocean tides, and electric conductivity below the Pacific. Can J Earth Sci 11:873–892

Google ScholarErofeeva S, Egbert G (2002) Efficient inverse modeling of barotropic ocean tides. J Ocean Atmos Technol 19:183–204

CrossRefGoogle ScholarEverett ME, Schultz A (1996) Geomagnetic induction in a heterogeneous sphere: azimutally symmetric test computations and the response of an undulating 660-km discontinuity. J Geophys Res 101:2765–2783

CrossRefGoogle ScholarEverett ME, Constable S, Constable CG (2003) Effects of near-surface conductance on global satellite induction responses. Geophys J Int 153:277–286

CrossRefGoogle ScholarFainberg EB, Kuvshinov AV, Singer BSh (1990) Electromagnetic induction in a spherical earth with non-uniform oceans and continents in electric contact with the underlying medium – I. Theory, method and example. Geophys J Int 102:273–281

CrossRefGoogle ScholarFlosadottir AH, Larsen JC, Smith JT (1997) Motional induction in North Atlantic circulation models. J Geophys Res 102:10353–10372

CrossRefGoogle ScholarFriis-Christensen E, Lühr H, Hulot G (2006)

*Swarm*: a constellation to study the Earth’s magnetic field. Earth, Planets Space 58:351–358

Google ScholarFujii I, Utada H (2000) On geoelectric potential variations over a planetary scale. Mem Kakioka Magn Obs 29:1–71

Google ScholarGlazman R, Golubev Y (2005) Variability of the ocean-induced magnetic field predicted at sea surface and at satellite altitudes. J Geophys Res 110:C12011. doi:

10.1029/2005JC002926
CrossRefGoogle ScholarGrammatica N, Tarits P (2002) Contribution at satellite altitude of electromagnetically induced anomalies arising from a three-dimensional heterogeneously conducting Earth, using Sq as an inducing source field. Geophys J Int 151:913–923

CrossRefGoogle ScholarHamano Y (2002) A new time-domain approach for the electromagnetic induction problem in a three-dimensional heterogeneous earth. Geophys J Int 150:753–769

CrossRefGoogle ScholarHarvey RR, Larsen J, Montaner R (1977) Electric field recording of tidal currents in the Strait of Magellan. J Geophys Res 82:3472–3476

CrossRefGoogle ScholarHewson-Brown RC, Kendall PC (1978) Some new ideas on induction in infinitely-conducting oceans of arbitrary shapes. Geophys J R Astr Soc 53:431–444

Google ScholarHobbs BA (1981) A comparison of Sq analyses with model calculations. Geophys J R Astr Soc 66:435–447

Google ScholarJunge A (1988) The telluric field in northern Germany induced by tidal motion in North Sea. Geophys J Int 95:523–533

CrossRefGoogle ScholarKoyama T, Shimizu H, Utada H (2002) Possible effects of lateral heterogeneity in the D′′ layer on electromagnetic variations of core origin. Phys Earth Planet Int 129:99–116

CrossRefGoogle ScholarKuvshinov A (2007) Global 3-D EM induction in the solid Earth and the oceans. In: Spichak V (ed) Electromagnetic sounding of the Earth’s interior, vol 1. Elsevier, Holland, pp 4–24

Google ScholarKuvshinov A (2008) 3-D integral equation analysis of the global Schumann resonance. J Atmos Phys (in preparation)

Kuvshinov A, Olsen N (2005a) Modelling the ocean effect of geomagnetic storms at ground and satellite altitude. In: Reigber Ch, Lühr H, Schwintzer P, Wickert J (eds) Earth observation with CHAMP. Results from three years in orbit. Springer-Verlag, Berlin, pp 353–358

CrossRefGoogle ScholarKuvshinov A, Olsen N (2005b) 3-D modelling of the magnetic fields due to ocean tidal flow. In: Reigber Ch, Lühr H, Schwintzer P, Wickert J (eds) Earth observation with CHAMP. Results from three years in orbit. Springer-Verlag, Berlin, pp 359–366

CrossRefGoogle ScholarKuvshinov A, Olsen N (2006) A global model of mantle conductivity derived from 5 years of CHAMP, Ørsted and SAC-C magnetic data. Geophys Res Lett 33:L18301. doi:

10.1029/2006GL027083
CrossRefGoogle ScholarKuvshinov AV, Pankratov OV, Singer BSh (1990) The effect of the oceans and sedimentary cover on global magnetovariational field distribution. Pure Appl Geophys 134:533–540

CrossRefGoogle ScholarKuvshinov AV, Avdeev DB, Pankratov OV (1999) Global induction by Sq and Dst sources in the presence of oceans: bimodal solutions for non-uniform spherical surface shells above radially symmetric Earth models in comparison to observations. Geophys J Int 137:630–650

CrossRefGoogle ScholarKuvshinov AV, Avdeev DB, Pankratov OV, Golyshev SA, Olsen N (2002a) Modelling electromagnetic fields in 3-D spherical earth using fast integral equation approach. In: Zhdanov MS, Wannamaker P (eds) Three-dimensional electromagnetics. Elsevier, Holland, pp 43–54

CrossRefGoogle ScholarKuvshinov AV, Olsen N, Avdeev DB, Pankratov OV (2002b) Electromagnetic induction in the oceans and the anomalous behavior of coastal C-responses for periods up to 20 days. Geophys Res Lett 29(12). doi:

10.1029/2001GL014409
Kuvshinov AV, Utada H, Avdeev DB, Koyama T (2005) 3-D modelling and analysis of Dst

*C*-responses in the North Pacific Ocean region, revisited. Geophys J Int 160:505–526

CrossRefGoogle ScholarKuvshinov A, Sabaka T, Olsen N (2006a) 3-D electromagnetic induction studies using the Swarm constellation: mapping conductivity anomalies in the Earth’s mantle. Earth Planets Space 58:417–427

Google ScholarKuvshinov A, Junge A, Utada H (2006b) 3-D modelling the electric field due to ocean tidal flow and comparison with observations. Geophys Res Lett. doi:

10.1029/2005GL025043
Kuvshinov A, Manoj C, Olsen N, Sabaka T (2007) On induction effects of geomagnetic daily variations from equatorial electrojet and solar quiet sources at low and middle latitudes. J Geophys Res 112:B10102. doi:

10.1029/2007JB004955
CrossRefGoogle ScholarLangel RA, Estes RH (1985) Large-scale near-Earth magnetic fields from external sources and the corresponding induced internal field. J Geophys Res 90:2487–2494

CrossRefGoogle ScholarLanzerotti LJ, Sayres CH, Medford LV, Kraus JS, Maclennan CJ (1992) Earth potential over 4000 km between Hawaii and California. Geophys Res Lett 19:1177–1180

CrossRefGoogle ScholarLaske G, Masters G (1997) A global digital map of sediment thickness. EOS Trans. AGU 78 F483

Maus S, Kuvshinov A (2004) Ocean tidal signals in observatory and satellite magnetic measurements. Geophys Res Lett 31. doi:

10.1029/2004GL000634
Maus SM, Rother M, Hemant K, Stolle C, Lühr H, Kuvshinov A, Olsen N (2006) Earth’s lithospheric magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements. Geophys J Int 165:319–330

CrossRefGoogle ScholarManoj C, Kuvshinov AV, Maus S, Lühr H (2006a) Ocean circulation generated magnetic signals. Earth Planets Space 58:429–437

Google ScholarManoj C, Neetu S, Kuvshinov AV, Harinarayana T (2006b) Magnetic fields, generated by the Indian ocean Tsunami. In: Proceedings of the first swarm international science meeting, Nant, France

Manoj C, Kuvshinov AV, Neetu S, Harinarayana T (2008) Can undersea voltage measurements detect tsunamis? Earth Planets Space (submitted)

Martinec Z (1999) Spectral-finite element approach to three-dimensional electromagnetic induction in a spherical Earth. Geophys J Int 136:229–250

CrossRefGoogle ScholarNeubert T, Mandea M, Hulot G, von Frese R, Primdahl F, Jørgensen JL, Friis-Christensen E, Stauning P, Olsen N, Risbo T (2001) Ørsted satellite captures high-precision geomagnetic field data: EOS 82, No. 7, pp 81, 87, 88

Olsen N (1999) Induction studies with satellite data. Surv Geophys 20:309–340

CrossRefGoogle ScholarOlsen N (2002) A model of the geomagnetic field and its secular variation for epoch 2000 estimated from Orsted data. Geophys J Int 149:454–462

CrossRefGoogle ScholarOlsen N, Kuvshinov A (2004) Modelling the ocean effect of geomagnetic storms. Earth Planets Space 56:525–530

Google ScholarOnwumechili CA (1997) The equatorial electrojet. Gordon & Breach, Chap 2

Palshin N, Vanyan L, Yegorov I, Lebedev K (1999) Electric field induced by the global ocean circulation. Phys Solid Earth 35:1028–1035

Google ScholarPankratov OV, Avdeev DB, Kuvshinov AV (1995) Electromagnetic field scattering in a heterogeneous earth: a solution to the forward problem. Phys Solid Earth 31:201–209

Google ScholarPankratov OV, Kuvshinov AV, Avdeev DB (1997) High-performance three-dimensional electromagnetic modeling using modified Neumann series. Anisotropic case. J Geomagn Geoelectr 49:1541–1548

Google ScholarPlotkin VV (2004) Electromagnetic field in a nonuniform sphere (3D case), Russian. Geol Geophys 45(9):1107–1120

Google ScholarPulkkinen A, Engels M (2005) The role of 3D geomagnetic induction in the determination of the ionospheric currents from ground-based data. Ann Geophysicae 23:909–917

CrossRefGoogle ScholarPulkkinen A, Amm O, Viljanen A and the Bear Working group (2003) Ionospheric equivalent current distributions determined with the method of spherical elementary current systems. J Geophys Res 108(A2):1053

Google ScholarRastogi RG (2004) Electromagnetic induction by the equatorial electrojet. Geophys J Int 158:16–31

CrossRefGoogle ScholarReigber C, Lühr H, Schwintzer P (2002) CHAMP mission status. Adv Space Res 30:129–134

CrossRefGoogle ScholarRiedel K, Sidorenko A (1995) Minimum bias multiple taper spectral estimation. IEEE Trans Signal Process 43:188–195

CrossRefGoogle ScholarRooney WJ (1938) Lunar diurnal variation in Earth currents at Huancayo and Tuscon. J Geophys Res 43:107–118

CrossRefGoogle ScholarRostoker G, Friedrich E, Dobbs M (1997) Physics of magnetic storms. In: Tsurutani BT, Gonzales WD, Kamide Y, Arballo JK (eds) 98 Geophysical monograph series, AGU, Washington DC, pp 149–160

Sabaka T, Olsen N, Purucker M (2004) Extending comprehensive models of the Earth’s magnetic field with Orsted and CHAMP data. Geophys J Int 159:521–547

CrossRefGoogle ScholarSindhu BI, Suresh A, Unnikrishnan N, Bhatkar S, Neetu GS (2007) Michael, improved bathymetric datasets for the shallow water regions in the Indian Ocean. J Earth Syst Sci 116:261–274

CrossRefGoogle ScholarSinger BSh (1995) Method for solution of Maxwell’s equations in non-uniform media. Geophys J Int 120:590–598

CrossRefGoogle ScholarSchmucker U (1985a) Electrical properties of the Earth’s interior. In: Landolt-Bornstein, New Series, 5/2b. Springer-Verlag, Berlin, pp 370–395

Schmucker U (1985b) Magnetic and electric fields due to electromagnetic induction by external sources. In: Landolt-Bornstein, New Series, 5/2b. Springer-Verlag, Berlin, pp 100–125

Schmucker U (1999) A spherical harmonic analysis of solar daily variations in the years 1964–1965: response estimates and source fields for global induction – I. Methods. Geophys J Int 136:439–454

CrossRefGoogle ScholarStephenson D, Bryan K (1992) Large-scale electric and magnetic fields generated by the oceans. J Geophys Res 97:15467–15480

CrossRefGoogle ScholarTakeda M (1991) Electric currents in the ocean induced by the geomagnetic Sq field and their effect on the estimation of mantle conductivity. Geophys J Int 104:381–385

CrossRefGoogle ScholarTakeda M (1993) Electric currents in the ocean induced by model Dst field and their effects on the estimation of mantle conductivity. Geophys J Int 114:289–292

CrossRefGoogle ScholarTarits P (1994) Electromagnetic studies of global geodynamic processes. Surv Geophys 15:209–238

Google ScholarTarits P, Grammatica N (2000) Electromagnetic induction effects by the solar quiet magnetic field at satellite altitude. Geophys Res Lett 27:4009–4012

CrossRefGoogle ScholarTyler RH (2005) A simple formula for estimating the magnetic fields generated by tsunami flow. Geophys Res Lett 32:L09608. doi:

10.1029/2005GL022429
CrossRefGoogle ScholarTyler R, Mysak LA, Oberhuber J (1997) Electromagnetic fields generated by a 3-D global ocean circulation. J Geophys Res 102:5531–5551

CrossRefGoogle ScholarTyler R, Sanford TB, Oberhuber J (1998) Magnetic fields generated by ocean flow. AGU Fall Conference

Tyler R, Maus S, Lühr H (2003) Satellite observations of magnetic fields due to ocean tidal flow. Science 299:239–240

CrossRefGoogle ScholarUtada H, Koyama T, Shimizu H, Chave A (2003) A semi-global reference model for electrical conductivity in the mid-mantle beneath the north Pacific region. Geophys Res Lett 30(4). doi:

10.1029/2002GL016092
Uyeshima M, Schultz A (2000) Geoelectromagnetic induction in a heterogeneous sphere: a new 3-D forward solver using a staggered-grid integral formulation. Geophys J Int 140:636–650

CrossRefGoogle ScholarVanyan LL, Palshin NA, Repin IA (1995) Deep magnetottelluric sounding with the use of the Australia-New Zealand cable 2. Interpretation. Phys Solid Earth 31:417–421

Google ScholarVelimsky J, Everett ME (2005) Electromagnetic induction by Sq ionospheric currents in a heterogeneous Earth: modelling using ground-based and satellite measurements: In: Reigber Ch, Lühr H, Schwintzer P, Wickert J (eds) Earth observation with CHAMP. Results from three years in orbit. Springer-Verlag, pp 341–347

Velimsky J, Martinec Z (2005) Time-domain, spherical harmonic-finite element approach to transient three-dimensional geomagnetic induction in a spherical heterogeneous Earth. Geophys J Int 161:81–101

CrossRefGoogle ScholarVelimsky J, Everett ME, Martinec Z (2003) The transient Dst electromagnetic induction signal at satellite altitudes for a realistic 3-D electrical conductivity in the crust and mantle. Geophys Res Lett doi:

10.1029/2002GL016,671
Vivier F, Maier-Reimer E, Tyler RH (2004) Simulations of magnetic fields generated by the Antarctic Circumpolar Current at satellite altitude: can geomagnetic measurements be used to monitor the flow? Geophys Res Lett 31. doi:

10.1029/2004GL019804
Wang H, Lühr H, Ma SY (2005) Solar zenith angle and merging electric field control of field-aligned currents: a statistical study of the southern hemisphere. J Geophys Res 110 A3, A03306 doi:

10.1029/2004JA010530
Weidelt P (1972) The inverse problem of geomagnetic induction. Z Geophys 38:257–289

Google ScholarWeiss CJ, Everett ME (1998) Geomagnetic induction in a heterogeneous sphere: fully three-dimensional test computations and the response of a realistic distribution of oceans and continents. Geophys J Int 135:650–662

CrossRefGoogle ScholarYoshimura R, Oshiman N (2002) Edge-based finite element approach to the simulation of geoelectromagnetic induction in a 3-D sphere. Geophys Res Lett 29(2). doi:

10.1029/2001GL014121