Geometriae Dedicata

, Volume 155, Issue 1, pp 141–149

An infinite family of convex Brunnian links in \({\mathbb{R}^n}\)

  • Bob Davis
  • Hugh N. Howards
  • Jonathan Newman
  • Jason Parsley
Original Paper

DOI: 10.1007/s10711-011-9581-4

Cite this article as:
Davis, B., Howards, H.N., Newman, J. et al. Geom Dedicata (2011) 155: 141. doi:10.1007/s10711-011-9581-4
  • 54 Downloads

Abstract

This paper proves that convex Brunnian links exist for every dimension n ≥ 3 by constructing explicit examples. These examples are three-component links which are higher-dimensional generalizations of the Borromean rings.

Keywords

Brunnian linksHigh-dimensional knot theoryBorromean rings

Mathematics Subject Classification (2000)

57Q45

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Bob Davis
    • 1
  • Hugh N. Howards
    • 1
  • Jonathan Newman
    • 1
  • Jason Parsley
    • 1
  1. 1.Department of MathematicsWake Forest UniversityWinston SalemUSA