Geometriae Dedicata

, Volume 151, Issue 1, pp 221–231

Incompressible surfaces and spunnormal form

Authors

Original Paper

DOI: 10.1007/s10711-010-9529-0

Cite this article as:
Walsh, G.S. Geom Dedicata (2011) 151: 221. doi:10.1007/s10711-010-9529-0

Abstract

Suppose M is a cusped finite-volume hyperbolic 3-manifold and \({\mathcal{T}}\) is an ideal triangulation of M with essential edges. We show that any incompressible surface S in M that is not a virtual fiber can be isotoped into spunnormal form in \({\mathcal{T}}\). The proof is based directly on ideas of W. Thurston.

Keywords

Hyperbolic 3-manifoldIdeal triangulationSpunnormal surface

Mathematics Subject Classification (2000)

57M9957Q37

Copyright information

© Springer Science+Business Media B.V. 2010