Geometriae Dedicata

, Volume 147, Issue 1, pp 29–45

Profinite properties of graph manifolds

Original Paper

DOI: 10.1007/s10711-009-9437-3

Cite this article as:
Wilton, H. & Zalesskii, P. Geom Dedicata (2010) 147: 29. doi:10.1007/s10711-009-9437-3


Let M be a closed, orientable, irreducible, geometrizable 3-manifold. We prove that the profinite topology on the fundamental group of π1(M) is efficient with respect to the JSJ decomposition of M. We go on to prove that π1(M) is good, in the sense of Serre, if all the pieces of the JSJ decomposition are. We also prove that if M is a graph manifold then π1(M) is conjugacy separable.


3-ManifoldsProfinite groupsConjugacy separability

Mathematics Subject Classification (2000)


Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Mathematics 253-37CaltechPasadenaUSA
  2. 2.Department of MathematicsUniversity of BrasiliaBrasiliaBrazil