Geometriae Dedicata

, Volume 112, Issue 1, pp 225–237

Arithmeticity vs. Nonlinearity for Irreducible Lattices

Article

DOI: 10.1007/s10711-004-6162-9

Cite this article as:
Monod, N. Geom Dedicata (2005) 112: 225. doi:10.1007/s10711-004-6162-9

Abstract

We establish an arithmeticity vs. nonlinearity alternative for irreducible lattices in suitable product groups, for instance products of topologically simple groups. This applies notably to a (large class of) Kac–Moody groups. The alternative relies heavily on the superrigidity theorem we propose since we follow Margulis’ reduction of arithmeticity to superrigidity.

Keywords

arithmeticity linear representations lattices Kac–Moody groups 

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ChicagoChicagoU.S.A

Personalised recommendations