1.

K. P. Anchor, J. B. Zydallis, G. H. Gunsch, and G. B. Lamont “Extending thecomputer defense immune system: Network intrusion detection with a multiobjective evolutionary programming spproach,” in First International Conference on Artificial Immune Systems (ICARIS’2002), J. Timmis and P. J. Bentley (Eds.), University of Kentat Canterbury, UK, Sept. 2002, pp. 12–21. ISBN 1-902671-32-5.

Google Scholar2.

F. M. Burnet “Clonal selection and after,” in Theoretical Immunology, G. I. Bell, A. S. Perelson, and G. H. Pimgley Jr. (Eds.), Marcel Dekker Inc., 1978, pp. 63–85.

3.

C. A. Coello Coello “A comprehensive survey of evolutionary-based multiobjective optimization techniques,” Knowledge and Information Systems. An International Journal, vol. 1, no. 3, pp. 269–308, 1999.

Google Scholar4.

C. A. Coello Coello “Theoretical and numerical constraint handling techniques used with evolutionary algorithms: A survey of the state of the art,” Computer Methods in Applied Mechanics and Engineering, vol. 191, no. 11/12, pp. 1245–1287, 2002.

Google Scholar5.

C. A. Coello Coello and N. Cruz Cortés “An approach to solve multiobjective optimization problems based on an artificial immune system,” in First International Conference on Artificial Immune Systems (ICARIS’2002), J. Timmis and P. J. Bentley (Eds.) University of Kentat Canterbury: UK, Sept. 2002, pp. 212–221. ISBN 1-902671-32-5.

Google Scholar6.

C. A. Coello Coello and G. Toscano Pulido “Multiobjective optimization using a micro-genetic algorithm,” in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2001), L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke (Eds.), Morgan Kaufmann Publishers: San Francisco, CA, 2001, pp. 274–282.

Google Scholar7.

C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont “Evolutionary algorithms for solving multi-objective problems,” Kluwer Academic Publishers, New York, May 2002, ISBN 0-3064-6762-3.

Google Scholar8.

X. Cui, M. Li, and T. Fang “Study of population diversity of multiobjectiveevolutionary algorithm based on immune and entropy principles,” in Proceedings of the Congress on Evolutionary Computation 2001 (CEC’2001), IEEE Service Center: Piscataway, New Jersey, May 2001, vol.2, pp. 1316–1321.

Google Scholar9.

D. Dasgupta, (Ed.) Artificial Immune Systems and Their Applications, Springer-Verlag: Berlin, 1999.

Google Scholar10.

K. Deb “Multi-objective genetic algorithms: Problem difficulties and construction of test problems,” Evolutionary Computation, vol. 7, no. 3, pp. 205–230, Fall 1999.

Google Scholar11.

K. Deb Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & Sons: Chichester, UK, 2001. ISBN 0-471-87339-X.

Google Scholar12.

K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan “A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II,” in Proceedings of the Parallel Problem Solving from Nature VI Conference, M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and H.-P. Schwefel (Eds.) Springer: Paris, France, 2000, pp. 849–858. Lecture Notes in Computer Science No. 1917.

Google Scholar13.

K. Deb and D. E. Goldberg “An investigation of niche and species formation in genetic function optimization,” in Proceedings of the Third International Conference on Genetic Algorithms, J. D. Schaffer (Ed.), George Mason University, Morgan Kaufmann Publishers: San Mateo, California, June 1989, pp. 42–50.

Google Scholar14.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan “A fast and elitist multiobjective genetic algorithm: NSGA–II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

Google Scholar15.

F. Y. Edgeworth Mathematical Physics. P. Keagan: London, England, 1881.

Google Scholar16.

C. M. Fonseca and P. J. Fleming “Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization,” in Proceedings of the Fifth International Conference on Genetic Algorithms, S. Forrest (Ed.), Morgan Kauffman Publishers: San Mateo, CA, 1993, pp. 416–423.

Google Scholar17.

S. Forrest and S. A. Hofmeyr “Immunology as information processing,” in Design Principles for the Immune System and Other Distributed Autonomous Systems, L. A. Segel and I. Cohen (Eds.) Santa Fe Institute Studies in the Sciences of Complexity, Oxford University Press, 2000, pp. 361–387.

18.

S. Forrest and A. S. Perelson “Genetic algorithms and the immune system,” in Parallel Problem Solving from Nature, H.-P. Schwefel and R. Männer (Eds.) Lecture Notes in Computer Science, Springer-Verlag: Berlin, Germany, 1991, pp. 320–325.

Google Scholar19.

S. A. Frank The Design of Natural and Artificial Adaptive Systems. Academic Press: New York, 1996.

Google Scholar20.

D. E. Goldberg Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company: Reading, MA, 1989.

Google Scholar21.

W. Habenicht “Quad trees: A data structure for discrete vector optimizationproblems,” in Lecture Notes in Economics and Mathematical Systems, vol. 209, pp. 136–145, 1982.

Google Scholar22.

P. Hajela and J. Lee “Constrained genetic search via schema adaptation. An immune network solution,” in Proceedings of the First World Congress of Stuctural and Multidisciplinary Optimization, N. Olhoff and G. I. N. Rozvany (Eds.) Pergamon: Goslar, Germany, 1995, pp. 915–920.

Google Scholar23.

P. Hajela and J. Lee “Constrained genetic search via schema adaptation. An immune network solution,” Structural Optimization, vol. 12, pp. 11–15, 1996.

Google Scholar24.

J. Horn “Multicriterion secision making,” in Handbook of Evolutionary Computation, T. Bäck, D. Fogel, and Z. Michalewicz (Eds.) IOP Publishing Ltd. and Oxford University Press, 1997, vol. 1, pp. F1.9:1–F1.9:15.

25.

J. E. Hunt and D. E. Cooke “An adaptative, distributed learning systems based on the immune system,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernatics, 1995, pp. 2494–2499.

26.

N. K. Jerne “Towards a network theory of the immune system,” Annals of Immunology (Inst. Pasteur), vol. 125C, pp. 373–389, 1974.

Google Scholar27.

H. Kita, Y. Yabumoto, N. Mori, and Y. Nishikawa “Multi-objective optimization by means of the thermodynamical genetic algorithm,” in Parallel Problem Solving from Nature—PPSN IV, H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel (Eds.) Lecture Notes in Computer Science, Springer-Verlag: Berlin, Germany, Sept. 1996, pp. 504–512.

28.

J. D. Knowles and D. W. Corne “Approximating the nondominated front using the pareto archived evolution strategy,” Evolutionary Computation, vol. 8, no. 2, pp. 149–172, 2000.

Google Scholar29.

A. Kurpati and S. Azarm “Immune network simulation with multiobjective genetic algorithms for multidisciplinary design optimization,” Engineering Optimization, vol. 33, pp. 245–260, 2000.

Google Scholar30.

F. Kursawe “A variant of evolution strategies for vector optimization,” in Parallel Problem Solving from Nature. 1st Workshop, PPSN I, H. P. Schwefel and R. Männer (Eds.) vol. 496 of Lecture Notes in Computer Science, Springer-Verlag: Berlin, Germany, Oct. 1991, pp. 193–197.

31.

K. M. Miettinen Nonlinear Multiobjective Optimization, Kluwer Academic Publishers: Boston, MA, 1998.

Google Scholar32.

L. Nunes de Castro and J. Timmis Artificial Immune Systems: A New Computational Intelligence Approach, Springer: London, 2002.

Google Scholar33.

L. Nunes de Castro and J. Timmis “An artificial immune network for multimodal function optimization,” in Proceedings of the 2002 IEEE Congress on Evolutionary Computation (CEC’2002), Honolulu, Hawaii, IEEE, vol. 1, pp. 699–704, May 2002.

Google Scholar34.

L. Nunes de Castro and F. J. Von Zuben “Artificial immune systems: Part I—Basic theory and applications,” Technical Report TR-DCA 01/99, FEEC/UNICAMP, Brazil, Dec. 1999.

35.

L. Nunes de Castro and F. J. Von Zuben “aiNet: An artificial immune networkfor data analysis,” in Data Mining:A Heuristic Approach, H. A. Abbass, R. A. Sarker and C. S. Newton(Eds.) Idea Group Publishing, USA, 2001, pp. 231–259, Chap. XII.

36.

L. Nunes de Castro and F. J. Von Zuben “Learning and optimization using the clonal selection principle,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 3, pp. 239–251, 2002.

Google Scholar37.

V. Pareto Cours D’Economie Politique, volume I and II, F. Rouge, Lausanne 1896.

38.

G. Rudolph “On a multi-objective evolutionary algorithm and its convergence to the pareto set,” in Proceedings of the 5th IEEE Conference on Evolutionary Computation, IEEE Press: Piscataway, New Jersey, 1998, pp. 511–516.

Google Scholar39.

J. D. Schaffer Multiple Objective Optimization with Vector Evaluated Genetic Algorithms, PhD thesis, Vanderbilt University, 1984.

40.

J. D. Schaffer “Multiple objective optimization with vector evaluated genetic algorithms,” in Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, Lawrence Erlbaum: Hillsdale, New Jersey, 1985, pp. 93–100.

Google Scholar41.

J. R. Schott “Fault tolerant design using single and multicriteria genetic algorithm optimization,” Master’s thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, May 1995.

42.

R. E. Smith, S. Forrest, and A. S. Perelson “Searching for diverse, cooperative populations with genetic algorithms,” Technical Report TCGA No. 92002, University of Alabama, Tuscaloosa, AL, 1992.

Google Scholar43.

R. E. Smith, S. Forrest, and A. S. Perelson “Population diversity in an immune system model: Implications for genetic search,” in Foundations of Genetic Algorithms, L. D. Whitley (Ed.), Morgan Kaufmann Publishers: San Mateo, CA, 1993, vol. 2, pp. 153–165.

Google Scholar44.

N. Srinivas and K. Deb “Multiobjective optimization using nondominated sorting in genetic algorithms,” Evolutionary Computation, vol. 2, no. 3, pp. 221–248, Fall 1994.

Google Scholar45.

W. Stadler “Fundamentals of multicriteria optimization,” in Multicriteria Optimization in Engineering and the Sciences, W. Stadler (Ed.), Plenum Press: New York, 1988, pp. 1–25.

Google Scholar46.

D. A. Van Veldhuizen Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. PhD thesis, Department of Electrical and Computer Engineering. Graduate School of Engineering. Air Force Institute of Technology, Wright-Patterson AFB, OH, May 1999.

47.

D. A. Van Veldhuizen and G. B. Lamont “Multiobjective evolutionary algorithm research: A history and analysis,” Technical Report TR-98-03, Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, OH, 1998.

48.

D. A. Van Veldhuizen and G. B. Lamont “MOEA test suite generation, design & use,” in Proceedings of the 1999 Genetic and Evolutionary Computation Conference. Workshop Program, A. S. Wu (Ed.), Orlando, FL, July 1999, pp. 113–114.

49.

D. A. Van Veldhuizen and G. B. Lamont “On measuring multiobjective evolutionary algorithm performance,” in 2000 Congress on Evolutionary Computation, IEEE Service Center: Piscataway, New Jersey, July 2000, vol. 1, pp. 204–211.

Google Scholar50.

R. Viennet, C. Fontiex, and I. Marc “New multicriteria optimization method based on the use of a diploid genetic algorithm: Example of an industrial problem,” in Proceedings of Artificial Evolution (European Conference, selected papers), J. M. Alliot, E. Lutton, E. Ronald, M. Schoenauer, and D. Snyers (Eds.), Springer-Verlag: Brest, France, Sept. 1995, pp. 120–127.

Google Scholar51.

J. Yoo and P. Hajela “Immune network simulations in multicriterion design,” Structural Optimization, vol. 18, pp. 85–94, 1999.

Google Scholar52.

E. Zitzler, K. Deb, and L. Thiele “Comparison of multiobjective evolutionary algorithms: Empirical results,” Evolutionary Computation, vol. 8, no. 2, pp. 173–195, 2000.

Google Scholar