Skip to main content
Log in

Fine-scale genetic structure in populations of the Chagas’ disease vector Triatoma infestans (Hemiptera, Reduvidae)

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Fine scale patterns of genetic structure and dispersal in Triatoma infestans populations from Argentina was analysed. A total of 314 insects from 22 domestic and peridomestic sites from the locality of San Martín (Capayán department, Catamarca province) were typed for 10 polymorphic microsatellite loci. The results confirm subdivision of T. infestans populations with restricted dispersal among sampling sites and suggest inbreeding and/or stratification within the different domestic and peridomestic structures. Spatial correlation analysis showed that the scale of structuring is approximately of 400 m, indicating that active dispersal would occur within this distance range. It was detected difference in scale of structuring among sexes, with females dispersing over greater distances than males. This study suggests that insecticide treatment and surveillance should be extended within a radius of 400 m around the infested area, which would help to reduce the probability of reinfestation by covering an area of active dispersal. The inferences made from fine-scale spatial genetic structure analyses of T. infestans populations has demonstrated to be important for community-wide control programs, providing a complementary approach to help improve vector control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ceballos LA, Piccinali RV, Marcet PL, Vazquez-Prokopec GM, Cardinal MV, Schachter-Broide J et al (2011) Hidden sylvatic foci of the main vector of Chagas disease Triatoma infestans: threats to the vector elimination campaign? PLoS Negl Trop Dis 5(10):e1365

    Article  PubMed  PubMed Central  Google Scholar 

  • Cecere MC, Gürtler RE, Canale DM, Chuit R, Cohen JE (2002) Effects of partial housing improvement and insecticide spraying on the reinfestation dynamics of Triatoma infestans in rural northwestern Argentina. Acta Trop 84:101–116

    Article  CAS  PubMed  Google Scholar 

  • Cecere MC, Vazquez-Prokopec GM, Gürtler RE, Kitron U (2004) Spatio-temporal analysis of reinfestation by Triatoma infestans (Hemiptera: Reduviidae) following insecticide spraying in a rural community in northwestern Argentina. Am J Trop Med Hyg 71:803–810

    Article  PubMed  Google Scholar 

  • Double MC, Peakall R, Beck NB, Cockburn A (2005) Dispersal, philopatry and infidelity: dissecting local genetic structure in superb fairy-wrens (Malurus cyaneus). Evolution 59:625–635

    CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    Article  CAS  Google Scholar 

  • Fredsted T, Pertoldi C, Schierup MH, Kappeler PM (2005) Microsatellite analyses reveal fine-scale genetic structure in grey mouse lemurs (Microcebus murinus). Mol Ecol 14:2363–2372

    Article  CAS  PubMed  Google Scholar 

  • García BA, Zheng L, Pérez de Rosas AR, Segura EL (2004) Isolation and characterization of polymorphic microsatellite loci in the Chagas’ disease vector Triatoma infestans (Hemiptera: Reduviidae). Mol Ecol Notes 4:568–571

    Article  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html. Updated from Goudet (1995)

  • Goudet J, Raymond M, De Meeus T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144:1931–1938

    Article  Google Scholar 

  • Gurevitz JM, Kitron U, Gütler RE (2007) Flight muscle dimorphism and heterogeneity in flight initiation of field-collected Triatoma infestans (Hemiptera: Reduviidae). J Med Entomol 44:186–191

    Article  PubMed  Google Scholar 

  • Gürtler RE, Canale DM, Spillmann C, Stariolo R, Salomón OD, Blanco S et al (2004) Effectiveness of residual spraying of peridomestic ecotopes with deltamethrin and permethrin on Triatoma infestan s in rural western Argentina: a district-wide randomized trial. Bull World Health Organ 82(3):196–205

    PubMed  PubMed Central  Google Scholar 

  • Gürtler RE, Kitron U, Cecere MC, Segura EL, Cohen JE (2007) Sustainable vector control and management of Chagas disease in the Gran Chaco, Argentina. Proc Natl Acad Sci USA 104:16194–16199

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi (version 1.2): a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Lehane MJ, McEwen PK, Whitaker CJ, Schofield CJ (1992) The role of temperature and nutritional status in flight initiation by Triatoma infestans. Acta Trop 52:27–38

    Article  CAS  PubMed  Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiacea). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • Lorca M, García A, Contreras MC, Schenone H, Rojas A (2001) Evaluation of a Triatoma infestans elimination program by the decrease of Trypanosoma cruzi infection frequency in children younger than 10 years, Chile, 1991–1998. Am J Trop Med Hyg 65:861–864

    Article  CAS  PubMed  Google Scholar 

  • Marcet PL, Mora MS, Cutrera AP, Jones L, Gürtler RE, Kitron U et al (2008) Genetic structure of Triatoma infestans populations in rural communities of Santiago del Estero, northern Argentina. Infect Genet Evol 8:835–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Book  Google Scholar 

  • Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Ruibal M, Lindenmayer DB (2003) Spatial autocorrelation analysis offers new insights into gene flow in the australian bush rat, Rattus fuscipes. Evolution 57:1182–1195

    Article  PubMed  Google Scholar 

  • Pérez de Rosas AR, Segura EL, García BA (2007) Microsatellite analysis of genetic structure in natural Triatoma infestans (Hemiptera: Reduviidae) populations from Argentina: its implication in assessing the effectiveness of Chagas’ disease vector control programmes. Mol Ecol 16:1401–1412

    Article  PubMed  Google Scholar 

  • Pérez de Rosas AR, Segura EL, Fichera L, García BA (2008) Macrogeographic and microgeographic genetic structure of the Chagas’ disease vector Triatoma infestans (Hemiptera: Reduviidae) from Catamarca, Argentina. Genetica 133:247–260

    Article  PubMed  Google Scholar 

  • Pérez de Rosas AR, Segura EL, García BA (2011) Molecular phylogeography of the Chagas’ disease vector Triatoma infestans in Argentina. Heredity 107:71–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  CAS  PubMed  Google Scholar 

  • Pizarro JC, Gilligan LM, Stevens L (2008) Microsatellites reveal a high population structure in Triatoma infestans from Chuquisaca, Bolivia. PLoS Negl Trop Dis 2:e202

    Article  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rassi A Jr, Rassi A, Marin-Neto JA (2010) Chagas disease. Lancet 375:1388–1402

    Article  PubMed  Google Scholar 

  • Richer W, Kengne P, Cortez MR, Perrineau MM, Cohuet A, Fontenille D et al (2007) Active dispersal by wild Triatoma infestans in the Bolivian Andes. Trop Med Int Health 12:759–764

    Article  PubMed  Google Scholar 

  • Schofield CJ, Lehane MJ, McEwen P, Catala SS, Gorla DE (1992) Dispersive flight by Triatoma infestans under natural climatic conditions in Argentina. Med Vet Entomol 6:51–56

    Article  CAS  PubMed  Google Scholar 

  • Schweigmann N, Vallvé S, Muscio O, Ghillini M, Alberti A, Wisnivesky-Colli C (1988) Dispersal flight by Triatoma infestans in an arid area of Argentina. Med Vet Entomol 2(4):401–404

    Article  CAS  PubMed  Google Scholar 

  • Silveira A, Vinhaes M (1999) Elimination of vector-borne transmission of Chagas disease. Mem Inst Oswaldo Cruz 94:405–411

    Article  PubMed  Google Scholar 

  • Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82:561–573

    Article  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Werman SD, Davidson EH, Britten RJ (1990) Rapid evolution in a fraction of the Drosophila nuclear genome. J Mol Evol 30:281–289

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (1994) Chagas disease. Elimination of transmission. Wkly Epidemiol Rec 69:38–40

    Google Scholar 

  • Wright S (1951) The genetical structure of populations. A Eug 15:323–354

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the grants from the Agencia Nacional de promoción Científica y Tecnológica (FONCYT), the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) of Argentina, and the Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba. E. L. Segura and B. A. García are Career Investigator of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz A. García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez de Rosas, A.R., Segura, E.L., Fusco, O. et al. Fine-scale genetic structure in populations of the Chagas’ disease vector Triatoma infestans (Hemiptera, Reduvidae). Genetica 141, 107–117 (2013). https://doi.org/10.1007/s10709-013-9710-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-013-9710-0

Keywords

Navigation