Skip to main content
Log in

Experimental Test of a Thermodynamic Paradox

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In 2000, a simple, foundational thermodynamic paradox was proposed: a sealed blackbody cavity contains a diatomic gas and a radiometer whose apposing vane surfaces dissociate and recombine the gas to different degrees (A\(_{2} \rightleftharpoons \) 2A). As a result of differing desorption rates for A and A\(_{2}\), there arise between the vane faces permanent pressure and temperature differences, either of which can be harnessed to perform work, in apparent conflict with the second law of thermodynamics. Here we report on the first experimental realization of this paradox, involving the dissociation of low-pressure hydrogen gas on high-temperature refractory metals (tungsten and rhenium) under blackbody cavity conditions. The results, corroborated by other laboratory studies and supported by theory, confirm the paradoxical temperature difference and point to physics beyond the traditional understanding of the second law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Loschmidt, J. Über den Zustand des Wärmegleichgewichtes eines Systeme von Körpern mit Rucksicht auf die Schwerkraft. Sitzungsber. Kais. Akad. Wiss. Wien, Math. Naturwiss. Classe 73, 128–142 (1876)

  2. Zermelo, E.: Über einen Satz der Dynamik und die mechanische Wärmetheorie. Ann. Phys. 57, 485–494 (1896)

    Article  Google Scholar 

  3. Gibbs, J.W.: On the equilibrium of heterogeneous substances. Trans. Conn. Acad. 3(108–248), 343–524 (1873)

    Google Scholar 

  4. Leff, H.S., Rex, A.F. (eds.): Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing. Institute of Physics, Bristol (2003)

    Google Scholar 

  5. Čápek, V., Sheehan, D.P.: Challenges to the Second Law of Thermodynamics: Theory and Experiment, Fundamental Theories of Physics, vol. 146. Springer, Dordrecht (2005)

    Google Scholar 

  6. Duncan, T.L.: Comment on ‘Dynamically maintained steady-state pressure gradients’. Phys. Rev. E 61, 4661 (2000)

    Article  ADS  Google Scholar 

  7. Sheehan, D.P.: Dynamically maintained steady-state pressure gradients. Phys. Rev. E 57, 6660–6666 (1998)

    Article  ADS  Google Scholar 

  8. Motley, R.W.: Q-Machines. Academic Press, New York (1975)

    Google Scholar 

  9. Jansen, F., Chen, I., Machonkin, M.A.: On the thermal dissociation of hydrogen. J. Appl. Phys. 66, 5749–5755 (1989)

    Article  ADS  Google Scholar 

  10. Schäfer, L., Klages, C.-P., Meier, U., Kohse-Höinghaus, K.: Atomic hydrogen concentration profiles at filaments used for chemical vapor deposition of diamond. Appl. Phys. Lett. 58, 571–573 (1991)

    Article  ADS  Google Scholar 

  11. Otsuka, T., Ihara, M., Komiyama, H.: Hydrogen dissociation on hot tantalum and tungsten filaments under diamond deposition conditions. J. Appl. Phys. 77, 893–898 (1995)

    Article  ADS  Google Scholar 

  12. Sheehan, D.P.: The second law and chemically-induced, steady-state pressure gradients: controversy, corroboration and caveats. Phys. Lett. A 280, 185–190 (2001)

    Article  ADS  Google Scholar 

  13. Qi, X., Chen, Z., Wang, G.: Formation and transport of atomic hydrogen in hot filament chemical vapor deposition reactors. J. Mater. Sci. Technol. 19, 235–239 (2003)

    Article  Google Scholar 

  14. Sheehan, D.P., Garamella, J.T., Mallin, D.J., Sheehan, W.F.: Experimental challenge to the second law of thermodynamics in high-temperature, gas-surface reactions. Phys. Scr. T151, 014030 (2012)

    Article  ADS  Google Scholar 

  15. Sheehan, D.P.: Heterogeneous catalysis in the long mean free path regime. Phys. Rev. E 88, 032125 (2013)

    Article  ADS  Google Scholar 

  16. Langmuir, I.: The dissociation of hydrogen into atoms. J. Am. Chem. Soc. 34, 860–877 (1912)

    Article  Google Scholar 

  17. Langmuir, I.: The dissociation of hydrogen into atoms. II. Calculation of the degree of dissociation and the heat of formation. J. Am. Chem. Soc. 37, 417–458 (1915)

    Article  Google Scholar 

  18. Zheng, W., Gallagher, A.: Hydrogen dissociation on high-temperature tungsten. Surf. Sci. 600, 2207–2213 (2006)

    Article  ADS  Google Scholar 

  19. Livshits, A.I., El Balghiti, F., Bacal, M.: Dissociation of hydrogen molecules on metal filaments in H\(^{-}\) sources. Plasma Sour. Sci. Technol. 3, 465–472 (1994)

    Article  ADS  Google Scholar 

  20. Manufacturers of commercial H-atom sources include Veeco (www.veeco.com/mbe), e-Science! (www.escience.com) and Tectra (www.tectra.de)

Download references

Acknowledgments

The authors acknowledge T. Herrinton, S.L. Miller, J. Opdycke and P.C. Sheehan for discussions. T.M. Welsh and B. Cragin (cragindesign.com) are thanked for the article’s figures, and D. Parsons for apparatus engineering and machining. This research was financially supported by Paradigm Energy Research Corporation. This article is dedicated to the memory of V. Čápek. Each author made significant contributions to the research presented in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Sheehan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheehan, D.P., Mallin, D.J., Garamella, J.T. et al. Experimental Test of a Thermodynamic Paradox. Found Phys 44, 235–247 (2014). https://doi.org/10.1007/s10701-014-9781-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9781-5

Keywords

Navigation