Foundations of Physics

, Volume 43, Issue 6, pp 733-746

First online:

A Symmetrical Interpretation of the Klein-Gordon Equation

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


This paper presents a new Symmetrical Interpretation (SI) of relativistic quantum mechanics which postulates: quantum mechanics is a theory about complete experiments, not particles; a complete experiment is maximally described by a complex transition amplitude density; and this transition amplitude density never collapses. This SI is compared to the Copenhagen Interpretation (CI) for the analysis of Einstein’s bubble experiment. This SI makes several experimentally testable predictions that differ from the CI, solves one part of the measurement problem, resolves some inconsistencies of the CI, and gives intuitive explanations of some previously mysterious quantum effects.


Foundations of quantum mechanics Foundations of relativistic quantum mechanics Klein-Gordon equation Quantum interpretation Symmetrical interpretation Time-symmetric interpretation Copenhagen interpretation Measurement problem Quantum mechanics axioms Quantum mechanics postulates Problem of time Zitterbewegung Block universe Einsteins bubble Retrocausality Causality Delayed choice Interaction free Renninger Teleportation Role of observer Advanced wavefunction Two-state vector formalism TSVF Wavefunction collapse Wave function collapse