Accardi L. (1982) On the statistical meaning of the complex numbers in quantum mechanics. Nuovo Cimento 34: 161

Aerts D. (1982) Description of many physical entities without the paradoxes encountered in quantum mechanics. Foundations of Physics 12: 1131–1170

CrossRefAerts D. (1984) The missing element of reality in the description of quantum mechanics of the EPR paradox situation. Helvetica physica Acta 57: 421–428

Aerts D. (1992a) A possible explanation for the probabilities of quantum mechanics. Journal of Mathematical Physics 27: 202–210

CrossRefAerts D. (1992b) The construction of reality and its influence on the understanding of quantum structures. International Journal of Theoretical Physics 31: 1815–1837

CrossRefAerts D. (1995) Quantum structures: An attempt to explain the origin of their appearance in nature. International Journal of Theoretical Physics 34: 1165

CrossRefAerts D. (1996a) Relativity theory: What is reality?. Foundations of Physics 26: 1627–1644

CrossRefAerts D. (1996b) Towards a framework for possible unification of quantum and relativity theories. International Journal of Theoretical Physics 35: 2399–2416

CrossRefAerts D. (1998) The entity and modern physics: The creation-discovery view of reality. In: Castellani E. (Ed.). Interpreting bodies: Classical and quantum objects in modern physics. Princeton Unversity Press, Princeton

Aerts D. (1999a) The stuff the world is made of: Physics and reality, p. 129. In: Aerts D., Broekaert J., Mathijs E. (eds) The white book of ‘Einstein meets magritte’. Kluwer, Dordrecht, p 274

Aerts D. (1999b) Quantum mechanics: Structures, axioms and paradoxes, p. 141. In: Aerts D., Broekaert J., Mathijs E. (eds) The indigo book of ‘Einstein meets magritte’. Kluwer, Dordrecht, p 239

Aerts D. (2000) The description of joint quantum entities and the formulation of a paradox. International Journal of Theoretical Physics 39: 485–496

Aerts D. (2009) Quantum particles as conceptual entities. A possible explanatory framework for quantum theory. Foundations of Science 14: 361–411

CrossRefAerts D. (2010) Interpreting quantum particles as conceptual entities. International Journal of Theoretical Physics 49: 2950–2970

CrossRefAerts, D., & Sozzo, S. (2011a). Contextual risk and its relevance in economics. *Journal of Engineering Science and Technology Review*. arXiv:1105.1812 [physics.soc-ph].

Aerts, D., & Sozzo, S. (2011b). A contextual risk model for the Ellsberg paradox. *Journal of Engineering Science and Technology Review*. arXiv:1105.1814v1 [physics.soc-ph].

Aerts D., Durt T. (1994) Quantum, classical and intermediate, an illustrative example. Foundations of Science 24: 1353

Aerts D. et al (1987) The origin of the non-classical character of the quantum probability model. In: Blanquiere A. (Ed.), Information, complexity, and control in quantum physics. Springer, New York

Aerts, D., et al. (1990). An attempt to imagine parts of the reality of the micro-world. In J. Mizerski
(Ed.), *Problems in quantum physics II; Gdansk ’89* (pp. 3–25). Singapore: World Scientific
Publishing Company.

Amrein W. O. (1981) Non-relativistic quantum dynamics. Riedel, Dordrecht

Birkhoff G., Von Neumann J. (1936) The logic of quantum mechanics. The Annals of Mathematics 37: 823

CrossRefBorn M. (1926) Quantenmechanik der Stoßvorgänge. zeitschrift für physik 38: 803–827

CrossRefCoecke B. (1998) A representation for compound quantum systems as individual entities: Hard acts of creation and hidden correlations. Foundations of Physics 28: 1109–1135

CrossRefEmch G. G. (1984) Mathematical and conceptual foundations of twentieth century physics. North-Holland, Amsterdam

Feynman R. P. (1992) The character of physical law. Penguin Books, London

Foulis D., Randall C. (1972) Operational statistics I–Basic concepts. Journal of Mathematical Physics 11: 1667–1675

CrossRefGudder S. P. (1988) Quantum probability. Academic Press, Inc. Harcourt Brave Jovanovich, New York

Jauch J. M. (1968) Foundations of quantum mechanics. Addison-Wesley, Reading, Mass

Piron C. (1976) Foundations of quantum physics. W. A. Benjamin, Massachusetts

Piron C. (1978) La Description d’un Système Physique et le Présupposé de la Théorie Classique. Annales de la Fondation Louis de Broglie 3: 131–152

Piron, C. (1990). Mécanique quantique: Bases et applications. Presses polytechniques et universitaires romandes, Lausanne, Switzerland.

Pitovski I. (1989) Quantum probability—quantum logic. Springer, Berlin

Randall, C., & Foulis, D. (1983). A mathematical language for quantum physics, in Les Fondements de la Mecanique Quantique, ed. C. Gruber et al, A.V.C.P., case postale 101, 1015 Lausanne, Suisse.

Rauch H. (1988) Neutron interferometric tests of quantum mechanics. Helvetica Physica Acta 61: 589

Sassoli de Bianchi, M. (2011a). From permanence to total availability: A quantum conceptual upgrade.

*Foundations of Science*. doi:

10.1007/s10699-011-9233-z.

Sassoli de Bianchi, M. (2011b). Time-delay of classical and quantum scattering processes: A conceptual overview and a general definition.

*Central European Journal of Physics*. doi:

10.2478/s11534-011-0105-5.

Sassoli de Bianchi, M. (2011c). Ephemeral properties and the illusion of microscopic particles.

*Foundations of Science*, 16(4), 393–409. doi:

10.1007/s10699-011-9227-x. An Italian translation of the article is also available: Proprietá effimere e l’illusione delle particelle microscopiche. AutoRicerca, Volume 2, pp. 39–76 (2011).

Segal I. E. (1947) Postulates for general quantum mechanics. Annals of Mathematics 48: 930–948

CrossRefSmets S. (2005) The modes of physical properties in the logical foundations of physics Logic and Logical Philosophy 14:37–53

Vassell M. O., Lee J., Lockwood H. F. et al (1983) Multibarrier tunneling in Ga

_{1-x
}Al

_{
x
}As/GaAs heterostructures. Journal of Applied Physics 54: 5206–5213

CrossRef