Skip to main content

Advertisement

Log in

Cortisol and finfish welfare

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Previous reviews of stress, and the stress hormone cortisol, in fish have focussed on physiology, due to interest in impacts on aquaculture production. Here, we discuss cortisol in relation to fish welfare. Cortisol is a readily measured component of the primary (neuroendocrine) stress response and is relevant to fish welfare as it affects physiological and brain functions and modifies behaviour. However, we argue that cortisol has little value if welfare is viewed purely from a functional (or behavioural) perspective—the cortisol response itself is a natural, adaptive response and is not predictive of coping as downstream impacts on function and behaviour are dose-, time- and context-dependent and not predictable. Nevertheless, we argue that welfare should be considered in terms of mental health and feelings, and that stress in relation to welfare should be viewed as psychological, rather than physiological. We contend that cortisol can be used (with caution) as a tractable indicator of how fish perceive (and feel about) their environment, psychological stress and feelings in fish. Cortisol responses are directly triggered by the brain and fish studies do indicate cortisol responses to psychological stressors, i.e., those with no direct physicochemical action. We discuss the practicalities of using cortisol to ask the fish themselves how they feel about husbandry practices and the culture environment. Single time point measurements of cortisol are of little value in assessing the stress level of fish as studies need to account for diurnal and seasonal variations, and environmental and genetic factors. Areas in need of greater clarity for the use of cortisol as an indicator of fish feelings are the separation of (physiological) stress from (psychological) distress, the separation of chronic stress from acclimation, and the interactions between feelings, cortisol, mood and behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbink W, Bevelander GS, Rotllant J, Canario AVM, Flik G (2004) Calcium handling in Sparus auratus: effects of water and dietary calcium levels on mineral composition, cortisol and PTHrP levels. J Environ Biol 207:4077–4084

    Article  CAS  Google Scholar 

  • Abrous DN, Wojtowicz JM (2008) Neurogenesis and hippocampal memory system. In: Gage FH, Kempermann G, Song HJ (eds) Adult neurogenesis. Cold Spring Harbour Laboratory Press, Could Spring Harbour, pp 445–461

    Google Scholar 

  • Almazán-Rueda P, Van Helmond ATM, Verreth JAJ, Schrama JW (2005) Photoperiod affects growth, behaviour and stress variables in Clarias gariepinus. J Fish Biol 67:1029–1039

    Article  Google Scholar 

  • Aluru N, Vijayan MM (2009) Stress transcriptomics in fish: a role for genomic cortisol signalling. Gen Comp Endocrinol 164:142–150

    Article  PubMed  CAS  Google Scholar 

  • Alvarellos S, Arjona FJ, Martin del Rio MP, Miguez JM, Mancera JM, Soengas JL (2005) Time course of osmoregulatory and metabolic changes during osmotic acclimation in Sparus auratus. J Exp Biol 208:4291–4304

    Article  Google Scholar 

  • Alvarellos SS, Polakof S, Arjona FJ, Kleszynska A, Martin del Rio PM, Miguez JM, Soengas JL, Mancera JM (2006) Osmoregulatory and metabolic changes in the gilthead sea bream Sparus auratus after arginine vasotocin (AVT) treatment. Gen Comp Endocrinol 148:348–358

    Article  CAS  Google Scholar 

  • Andersen DE, Reid SD, Moon TW, Perry SF (1991) Metabolic effects associated with chronically elevated cortisol in rainbow trout (Oncorhynchus mykiss). Can J Fish Aquat Sci 48:1811–1817

    Article  CAS  Google Scholar 

  • Anderson DP (1990) Immunological indicators: effects of environmental stress on immune protection and disease outbreaks. Am Fish Soc Symp 8:38–50

    Google Scholar 

  • Anon (1992) FAWC updates the five freedoms. Vet Rec 131:357

    Google Scholar 

  • Anon (2009) Scientific opinion of the panel on animal health and welfare on a request from European Commission on general approach to fish welfare and to the concept of sentience in fish. EFSA J 954:1–26

    Google Scholar 

  • Arends RJ, Mancera JM, Munoz JL, Wendelaar Bonga SE (1999) The stress response of the gilthead seabream (Sparus aurata L.) to air exposure and confinement. J Endocrinol 163:149–157

    Article  PubMed  CAS  Google Scholar 

  • Arlinghaus R, Cooke SJ, Schwab A, Cowx IG (2007) Fish welfare: a challenge to the feelings-based approach, with implications for recreational fishing. Fish Fish 8:57–71

    Google Scholar 

  • Arlinghaus R, Schwab A, Cooke SJ, Cowx IG (2009) Contrasting pragmatic and suffering-centred approaches to fish welfare in recreational angling. J Fish Biol 75:2448–2463

    Article  PubMed  CAS  Google Scholar 

  • Barreto RE, Volpato GL, Pottinger TG (2006) The effect of elevated blood cortisol levels on the extinction of a conditioned stress response in rainbow trout. Horm Behav 50:484–488

    Article  PubMed  CAS  Google Scholar 

  • Barton BA (1997) Stress in finfish: past, present and future—a historical perspective. In: Iwama GK, Pickering AD, Sumpter JP, Schreck CB (eds) Fish stress and health in aquaculture. Cambridge University Press, Cambridge, pp 1–33

    Google Scholar 

  • Barton BA (2000) Salmonid fishes differ in their cortisol and glucose responses to handling and transport stress. N Am J Aquacult 62:12–18

    Article  Google Scholar 

  • Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Int Comp Biol 42:517–525

    Article  CAS  Google Scholar 

  • Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Ann Rev Fish Dis 1:3–26

    Article  Google Scholar 

  • Barton BA, Peter RE (1982) Plasma cortisol response in fingerling rainbow trout, Salmo gairdneri Richardson, to various transport conditions, anaesthesia, and cold shock. J Fish Biol 20:39–51

    Article  Google Scholar 

  • Barton BA, Toth LT (1980) Physiological stress in fish: a literature review with emphasis on cortisol dynamics. Fish Res Rep Fish Wildl Div 20:1–19

    Google Scholar 

  • Barton BA, Schreck CB, Barton LD (1987) Effects of chronic cortisol administration and daily acute stress on growth, physiological conditions, and stress responses in juvenile rainbow trout. Dis Aquat Org 2:173–185

    Article  CAS  Google Scholar 

  • Barton BA, Morgan JD, Vijayan MM (2002) Physiological and condition-related indicators of environmental stress in fish. In: Adams SM (ed) Biological indicators of aquatic ecosystem stress. Am Fish Soc, Bethesda, Maryland, pp 111–148

    Google Scholar 

  • Barton BA, Ribas L, Acerete L, Tort L (2005) Effects of chronic confinement on physiological responses of juvenile gilthead sea bream, Sparus aurata L., to acute handling. Aqua Res 36:172–179

    Article  Google Scholar 

  • Belanoff JK, Gross K, Yager A, Schatzberg AF (2001) Corticosteroids and cognition. J Psych Res 35:127–145

    Article  CAS  Google Scholar 

  • Bender N, Heg-Bachar Z, Oliveira RF, Canario AVM, Taborsky M (2008) Hormonal control of brood care and social status in a cichlid fish with brood care helpers. Physiol Behav 94:349–358

    Article  PubMed  CAS  Google Scholar 

  • Bernier NJ (2006) The corticotropin-releasing factor system as a mediator of the appetite-suppressing effects of stress in fish. Gen Comp Endocrinol 146:45–55

    Google Scholar 

  • Bernier NJ, Lin X, Peter RE (1999) Differential expression of corticotropin-releasing factor (CRF) and urotensin I precursor genes, and evidence of CRF gene expression regulated by cortisol in goldfish brain. Gen Comp Endocrinol 116:461–477

    Article  PubMed  CAS  Google Scholar 

  • Bernier NJ, Bedard N, Peter RE (2004) Effects of cortisol on food intake, growth, and forebrain neuropeptide Y and corticotropin-releasing factor gene expression in goldfish. Gen Comp Endocrinol 135:230–240

    Article  PubMed  CAS  Google Scholar 

  • Bishop JD, Malven PV, Singleton WL, Weesner GD (1999) Hormonal and behavioral correlates of emotional states in sexually trained boars. J Animal Sci 77:3339–3345

    CAS  Google Scholar 

  • Boissy A, Manteuffel G, Jensen MB, Moe RO, Spruijt B, Keeling LJ, Winckler C, Forkman B, Dimitrov I, Langbein J, Bakken M, Veissier I, Aubert A (2007) Assessment of positive emotions in animals to improve their welfare. Physiol Behav 92:375–397

    Article  PubMed  CAS  Google Scholar 

  • Braithwaite VA, Boulcott P (2007) Pain perception, aversion and fear in fish. Dis Aquat Org 75:131–138

    Article  PubMed  CAS  Google Scholar 

  • Braithwaite VA, Huntingford FA (2004) Fish and welfare: do fish have the capacity for pain perception and suffering? Animal Welfare 13:S87–S92

    CAS  Google Scholar 

  • Broom DM (2007) Cognitive ability and sentience: which aquatic animals should be protected? Dis Aquat Org 75:99–108

    Article  PubMed  CAS  Google Scholar 

  • Cameron HA, Gould E (1994) Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience 61:203–209

    Article  PubMed  CAS  Google Scholar 

  • Carbonara P, Corsi I, Focardi S, Lembo G, Rochira S, Scolamacchia M, Spedicato MT, McKinley RS (2010) The effects of stress induced by cortisol administration on the repeatability of swimming performance tests in the European sea bass (Dicentrarchus labrax L.). Mar Freshwater Behav Physiol 43:283-296. doi:10.1080/10236244.2010.504046

  • Carpenter RE, Summers CH (2009) Learning strategies during fear conditioning. Neurobiol Learn Mem 91:415–423

    Article  PubMed  Google Scholar 

  • Carragher JF, Sumpter JP (1990) Corticosteroid physiology in fish. In: Epple A, Scanes CG, Stetson MH (eds) Progress in comparative endocrinology. Wiley Liss, New York, pp 487–492

    Google Scholar 

  • Carragher JF, Sumpter JP, Pottinger TG, Pickering AD (1989) The deleterious effects of cortisol implantation on reproductive function in two species of trout, Salmo trutta L. and Salmo gairdneri Richardson. Gen Comp Endocrinol 76:310–321

    Article  PubMed  CAS  Google Scholar 

  • Carrion RL, Alvareollos S, Guzman JM, Martin del Rio M, Miguez JM, Soengas JL, Mancera JM (2002) Energy metabolism in fish tissues related to osmoregulation and cortisol action. Fish Physiol Biochem 27:179–188

    Article  Google Scholar 

  • Caruso G, Genovese L, Maracchiolo G, Mogica A (2005) Haematological biochemical and immunological parameters as stress indicators in Dicentrarchus labrax and Sparus aurata farmed in off-shore cages. Aquac Int 13:67–73

    Article  CAS  Google Scholar 

  • Casamitjana J (2004) Aquatic zoos: a critical study of UK public aquaria in the year 2004. Captive Animals’ Protection Society, p 136

  • CCAC: Canadian Council on Animal Care (2005) Guidelines on: the care and use of fish in research, teaching and testing. 94 pp. (http://ccac.ca/Documents/Standards/Guidelines/Fish.pdf)

  • Cerdá-Reverter JM, Zanuy S, Carrillo M, Madrid JA (1998) Time-course studies on plasma glucose, insulin, and cortisol in sea bass (Dicentrarchus labrax) held under different photoperiodic regimes. Physiol Behav 64:245–250

    Article  PubMed  Google Scholar 

  • Cericato L, Neto JGM, Fagundes M, Kreutz LC, Quevedo RM, Finco J, da Rosa JGS, Koakoski G, Centenaro L, Pottker E, Anziliero D, Barcellos LJG (2008) Cortisol response to acute stress in jundiá Rhamdia quelen acutely exposed to sub-lethal concentrations of agrichemicals. Comp Biochem Physiol C 148:281–286

    Google Scholar 

  • Chan DKO, Chester Jones I, Mosley W (1968) Pituitary and adrenocorticol factors in the control of water and electrolyte composition of the freshwater European eel (Anguilla anguilla L.). J Endocrinol 42:91–98

    Article  CAS  Google Scholar 

  • Chan DKO, Rankin JC, Chester Jones I (1969) Influences of the adrenal cortex and the corpuscles of Stannius on osmoregulation in the European eel (Anguilla anguilla L.). Gen Comp Endocrinol Suppl 2:342–353

    Article  Google Scholar 

  • Chandroo KP, Duncan IJH, Moccia RD (2004a) Can fish suffer?: perspectives on sentience, fear and stress. App Anim Behav Sci 86:225–250

    Article  Google Scholar 

  • Chandroo KP, Yue S, Moccia RD (2004b) An evaluation of current perspectives on consciousness and pain in fishes. Fish Fish 5:281–295

    Google Scholar 

  • Chrousos GP (1998) Stressors, stress, and neuroendocrine integration of the adaptive response: the 1997 Hans Selye Memorial Lecture. Ann New York Acad Sci 851:311–335

    Article  CAS  Google Scholar 

  • Chrousos GP, Kino T (2009) Glucocorticoid signalling in the cell. Expanding clinical implications to complex human behavioral and somatic disorders. Ann NY Acad Sci 1179:153–166

    Article  PubMed  CAS  Google Scholar 

  • Davis KB (2006) Management of physiological stress in finfish aquaculture. N Am J Aquacult 68:116–121

    Article  Google Scholar 

  • Dawkins MS (2006) A user’s guide to animal welfare science. Trends Ecol Evol 21:77–82

    Article  PubMed  Google Scholar 

  • de Boeck G, Alsop D, Wood C (2001) Cortisol effect on aerobic and anaerobic metabolism, nitrogen excretion and whole-body composition in juvenile rainbow trout. Physiol Biochem Zool 74(4):858–868

    Article  PubMed  Google Scholar 

  • de Kloet ER, Oitzl MS, Joels M (1999) Stress and cognition: are corticosteroids good or bad guys? Trends Neurosci 22:422–426

    Article  PubMed  Google Scholar 

  • Di Marco P, Priori A, Finoia MG, Massari A, Mandich A, Marino G (2008) Physiological responses of European sea bass Dicentrarchus labrax to different stocking densities and acute stress challenge. Aquaculture 275:319–328. doi:10.1016/j.aquaculture.2007.12.012

    Article  Google Scholar 

  • DiBattista JD, Anisman H, Whitehead M, Gilmour KM (2005) The effects of cortisol administration on social status and brain monoaminergic activity in rainbow trout Oncorhynchus mykiss. J Exp Biol 208:2707–2718

    Article  PubMed  CAS  Google Scholar 

  • Dickmeis Y (2009) Glucocorticoids and the circadian clock. J Endocrinol 200:3–22

    Article  PubMed  CAS  Google Scholar 

  • Donaldson EM (1981) The pituitary-interrenal axis as an indicator of stress in fish. In: Pickering AD (ed) Stress and fish. Academic Press, New York, pp 11–47

  • Doyle RE, Fisher AD, Hinch GN, Boissy A, Lee C (2010) Release from restraint generates a positive judgement bias in sheep. App Anim Behav Sci 122:28–34

    Article  Google Scholar 

  • Dunlap KD, Pelczar PL, Knapp R (2002) Social interactions and cortisol treatment increase the production of aggressive electrocommunication signals in male electric fish, Apteronotus leptorhynchus. Horm Behav 42:97–108

    Article  PubMed  CAS  Google Scholar 

  • Ellis T, North B, Scott AP, Bromage NR, Porter M, Gadd D (2002) The relationships between stocking density and the welfare of farmed rainbow trout. J Fish Biol 61:493–531

    Article  Google Scholar 

  • Ellis T, James JD, Stewart C, Scott AP (2004) A non-invasive stress assay based upon measuring cortisol release into the water by rainbow trout. J Fish Biol 65:1233–1252

    Article  CAS  Google Scholar 

  • Ellis T, James JD, Scott AP (2005) Branchial release of free cortisol and melatonin by rainbow trout. J Fish Biol 67:535–540

    Article  CAS  Google Scholar 

  • Ellis T, James J, Fridell F, Sundh H, Sundell K, Scott AP (2007a) Non-invasive measurement of cortisol and melatonin in seawater Atlantic salmon tanks. Aquaculture 272:707–716

    Article  CAS  Google Scholar 

  • Ellis T, Bagwell N, Pond M, Baynes S, Scott AP (2007b) Acute viral and bacterial infections elevate water cortisol concentrations. Aquaculture 272:698–706

    Article  CAS  Google Scholar 

  • Espmark AM, Eriksen MS, Salte R, Braastad BO, Bakken M (2008) A note on pre-spawning maternal cortisol exposure in farmed Atlantic salmon and its impact on the behaviour of offspring in response to a novel environment. App Anim Behav Sci 110:404–409

    Article  Google Scholar 

  • Fabbri E, Capuzzo A, Moon TW (1998) The role of circulating catecholamines in the regulation of fish metabolism: an overview. Comp Biochem Physiol C 120:177–192

    PubMed  CAS  Google Scholar 

  • Fanouraki E, Papandroulakis N, Ellis T, Mylonas CC, Scott AP, Pavlidis M (2008) Water cortisol is a reliable indicator of stress in European sea bass, Dicentrarchus labrax. Behaviour 145(SI):1267–1281

    Google Scholar 

  • Fietta P, Delsante G (2009) Central nervous system effects of natural and synthetic glucocorticoids. Psych Clin Neurosci 63:613–622

    Article  CAS  Google Scholar 

  • Flos R, Reig L, Torres P, Tort L (1988) Primary and secondary stress responses to grading and hauling in rainbow trout, Salmo gairdneri. Aquaculture 71:99–106

    Article  Google Scholar 

  • Fortner NA, Pickford GE (1982) The effects of hypophysectomy and replacement therapy with prolactin, cortisone, or their combination on the blood of the black bullhead Icatalurus melas. Gen Comp Endocrinol 47:111–119

    Article  PubMed  CAS  Google Scholar 

  • Galhardo L, Oliveira RF (2009) Psychological stress and welfare in fish. Ann Rev Biomed Sci 11:1–20

    Article  CAS  Google Scholar 

  • Galhardo L, Almeida O, Oliveira RF (2011) The role of predictability in the stress response of a cichlid fish. Physiol Behav 102:367–372

    Article  PubMed  CAS  Google Scholar 

  • Gilham ID, Baker BI (1985) A black background facilitates the response to stress in teleosts. J Endocrinol 105:99–105

    Article  PubMed  CAS  Google Scholar 

  • Gornati R, Papis E, Rimoldi S, Terova G, Saroglia M, Bernardini G (2004) Rearing density influences the expression of stress-related genes in sea bass (Dicentrarchus labrax L.) HMG-CoA reductase mRNA. Gene 341:111–118

    Article  PubMed  CAS  Google Scholar 

  • Grassi Milano E, Basari F, Chimenti C (1997) Adrenocortical and adrenomedullary homologs in eight species of adult and developing teleosts: morphology, histology and immunohistochemistry. Gen Comp Endocrinol 108:483–496

    Article  PubMed  CAS  Google Scholar 

  • Gregory TR, Wood CM (1999) The effects of chronic plasma cortisol elevation on the feeding behaviour, growth, competitive ability, and swimming performance of juvenile rainbow trout. Phys Biochem Zool 72:286–295

    Article  CAS  Google Scholar 

  • Heath AG (1995) Water pollution and fish physiology. CRC Press, VPI and State University, Blacksburg 359 pp

    Google Scholar 

  • Herrero MJ, Martinez FJ, Miguez JM (2007) Response of plasma and gastrointestinal melatonin, plasma cortisol and activity rhythms of European sea bass (Dicentrarchus labrax) to dietary supplementation with tryptophan and melatonin. J Comp Physiol [B] 177: 319–326

    Google Scholar 

  • Huntingford FA, Adams C, Braithwaite VA, Kadri S, Pottinger TG, Sandöe P, Turnbull JF (2006) Current issues in fish welfare. J Fish Biol 68:332–372

    Article  Google Scholar 

  • Jentoft S, Aastveit AH, Torjesen PA, Andersen Ø (2005) Effects of stress on growth, cortisol and glucose levels in non-domesticated Eurasian perch (Perca fluviatilis) and domesticated rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol 141:353–358

    Article  PubMed  CAS  Google Scholar 

  • Kagawa N, Mugiya Y (2000) Exposure of goldfish (Carassius auratus) to bluegills (Lepomis macrochirus) enhances expression of stress protein 70 mRNA in the brains and increases plasma cortisol levels. Zool Sci 17:1061–1066

    Article  PubMed  CAS  Google Scholar 

  • Kestin SC (1994) Pain and stress in fish. RSPCA, Horsham, West Sussex

    Google Scholar 

  • Kittilsen S, Schjolden J, Beitnes-Johansen I, Shawa JC, Pottinger TG, Sørensen C, Braastad BO, Bakken M, Øverli Ø (2009) Melanin-based skin spots reflect stress responsiveness in salmonid fish. Hormon Behav 56:292–298

    Article  CAS  Google Scholar 

  • Knapp R, Wingfield JC, Bass AH (1999) Steroid hormones and paternal care in the plainfin midshipman fish (Porichthys notatus). Horm Behav 35:81–89

    Article  PubMed  CAS  Google Scholar 

  • Koolhaas JM, Korte SM, de Boer SF, van der Vegt BJ, van Reenen CG, Hopster H, de Jong IC, Ruis MAW, Blokhuis HJ (1999) Coping styles in animals: current status in behavior and stress-physiology. Neurosci Biobehav Rev 23:925–935

    Article  PubMed  CAS  Google Scholar 

  • Korte SM (2001) Corticosteroids in relation to fear, anxiety and psychopathology. Neurosci Biobehav Rev 25:117–142

    Article  PubMed  CAS  Google Scholar 

  • Korte SM, Olivier B, Koolhaas JM (2007) A new animal welfare concept based on allostasis. Physiol Behav 92:422–428

    Article  PubMed  CAS  Google Scholar 

  • Kühn ER, Corneillie S, Ollevier F (1986) Circadian variations in plasma osmolality, electrolytes, glucose, and cortisol in carp (Cyprinus carpio). Gen Comp Endocrinol 61:459–468

    Article  PubMed  Google Scholar 

  • Laidley CW, Leatherland JF (1988) Cohort sampling, anaesthesia and stocking-density effects on plasma cortisol, thyroid hormone, metabolite and ion levels in rainbow trout, Salmo gairdneri Richardson. J Fish Biol 33:73–88

    Article  CAS  Google Scholar 

  • Laidley CW, Woo PTK, Leatherland JF (1988) The stress-response of rainbow trout to experimental infection with the blood parasite Cryptobia salmositica Katz, 1951. J Fish Biol 32:253–261

    Article  Google Scholar 

  • Lamba VJ, Goswami SV, Sundararaj BI (1983) Circannual and circadian variations in plasma levels of steroids (cortisol, estradiol-17b, estrone, and testosterone) correlated with the annual gonadal cycle in the catfish, Heteropneustes fossilis (Bloch). Gen Comp Endocrinol 50:205–225

    Article  PubMed  CAS  Google Scholar 

  • Lankford S, Weber G (2006) Potential roles of intraovarian growth factors during follicle maturation in rainbow trout (Oncorhynchus mykiss). Meeting Abstract

  • Lankford SE, Adams TE, Cech JJ (2003) Time of day and water temperature modify the physiological stress response in green sturgeon, Acipenser medirostris. Comp Biochem Physiol A 135:291–302

    Article  CAS  Google Scholar 

  • Leatherland JF (1993) Stocking density and cohort sampling effects on endocrine interactions in rainbow trout. Aquacult Int 1:137–156

    Article  Google Scholar 

  • Levine A, Zagoory-Sharon O, Feldman R, Lewis JG, Weller A (2007) Measuring cortisol in human psychobiological studies. Physiol Behav 90:43–53

    Article  PubMed  CAS  Google Scholar 

  • Li HW, Brocksen RW (1977) Approaches to the energetic costs of interspecific competition for space by rainbow trout (Salmo gairdneri). J Fish Biol 11:329–341

    Article  Google Scholar 

  • Li Y, Takei Y (2003) Ambient salinity-dependent effects of homologous natriuretic peptides (ANP, VNP, and CNP) on plasma cortisol level in the eel. Gen Comp Endocrinol 130:317–323

    Article  PubMed  CAS  Google Scholar 

  • López-Olmeda JF, Montoya A, Oliveira C, Sánchez-Vázquez FJ (2009) Synchronization to light and restricted-feeding schedules of behavioral and humoral daily rhythms in gilthead sea bream (Sparus aurata). Chronobiol Int 26:1389–1408

    Article  PubMed  CAS  Google Scholar 

  • Lund V, Mejdell CM, Röcklinsberg H, Anthony R, Håstein T (2007) Expanding the moral circle: fish as objects of moral concern. Dis Aquat Org 75:109–118

    Article  PubMed  Google Scholar 

  • Marino G, Di Marco P, Mandich A, Finoia MG, Cataudella S (2001) Changes in serum cortisol, metabolites, osmotic pressure and electrolytes in response to different blood sampling procedures in cultured sea bass (Dicentrarchus labrax L.). J Appl Ichthyol 17:115–120

    Article  Google Scholar 

  • Martins CIM, Schrama JW, Verreth JAJ (2006) The effect of group composition on the welfare of African catfish (Clarias gariepinus). App Anim Behav Sci 97:323–333

    Article  Google Scholar 

  • Martins CIM, Galhardo L, Noble C, Damsgård B, Spedicato MT, Zupa W, Beauchaud M, Kulczykowska E, Massabuau J-C, Carter T, Planellas SR, Kristiansen T (2011) Behavioural indicators of welfare in farmed fish. Fish Physiol Biochem. doi:10.1007/s10695-011-9518-8

  • Mateo JM (2008) Inverted-U shape relationship between cortisol and learning in ground squirrels. Neurobio Learn Memory 89:582–590

    Article  CAS  Google Scholar 

  • Mazeaud MM, Mazeaud F (1981) Adrenergic responses to stress in fish. In: Pickering AD (ed) Stress and fish. Academic Press, London, pp 50–75

    Google Scholar 

  • Mazeaud MM, Mazeaud F, Donaldson EM (1977) Primary and secondary effects of stress in fish: some new data with a general review. Trans Am Fish Soc 106:201–212

    Article  CAS  Google Scholar 

  • McCormick SD (1996) Effects of growth hormone and insulin-like growth factor I on salinity tolerance and gill Na+, K+-ATPase in Atlantic salmon (Salmo salar): Interactions with cortisol. Gen Comp Endocrinol 101:3–11

    Article  PubMed  CAS  Google Scholar 

  • McCormick MD (2001) Endocrine control of osmoregulation in Teleost fish. Am Zool 41:781–794. doi:10.1093/icb/41.4.781

    Article  CAS  Google Scholar 

  • McEwen BS, Wingfield JC (2010) What is in a name? Integrating homeostasis, allostasis and stress. Horm Behav 57:105–116

    Article  PubMed  Google Scholar 

  • Metcalfe JD (2009) Welfare in wild-capture marine fisheries. J Fish Biol 75:2855–2861

    Article  PubMed  CAS  Google Scholar 

  • Mikics E, Kruk MR, Haller J (2004) Genomic and non-genomic effects of glucocorticoids on aggressive behaviour in male rats. Psychoneuroendocrinol 29:618–635

    Article  CAS  Google Scholar 

  • Milligan CL (1996) Metabolic recovery from exhaustive exercise in rainbow trout. Comp Biochem Physiol A 113:51–60. doi:10.1016/0300-9629(95)02060-8

    Article  Google Scholar 

  • Milligan CL (2003) A regulatory role of cortisol in muscle glycogen metabolism in rainbow trout Oncorhynchus mykiss Walbaum. J Exp Biol 206:3167–3173. doi:10.1242/jeb.00538

    Article  PubMed  CAS  Google Scholar 

  • Milligan CL, Hooke GB, Johnson C (2000) Sustained swimming at low velocity following a bout of exhaustive exercise enhances metabolic recovery in rainbow trout. J Exp Biol 203:921–926

    PubMed  CAS  Google Scholar 

  • Molinero A, Gómez E, Balasch J, Tort L (1997) Stress by fish removal in the sea bream Sparus aurata: a time course study on the remaining fish in the same tank. J Appl Aquacult 7:1–12

    Article  Google Scholar 

  • Mommsen TP, Vijayan MM, Monn TW (1999) Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fish 9:211–268

    Article  Google Scholar 

  • Moreira PSA, Volpato GL (2004) Conditioning of stress in Nile tilapia. J Fish Biol 64:961–969

    Article  Google Scholar 

  • Moreira PSA, Pulman KGT, Pottinger TG (2004) Extinction of a conditioned response in rainbow trout selected for high or low responsiveness to stress. Horm Behav 46:450–457

    Article  PubMed  CAS  Google Scholar 

  • Morgan JD, Iwama GK (1996) Cortisol-induced changes in oxygen consumption and ionic regulation in coastal cutthroat trout (Oncorhynchus clarki clarki) parr. Fish Physiol Biochem 15:385–394

    Article  Google Scholar 

  • Morgan MJ, Wilson CE, Crim LW (1999) The effect of stress on reproduction in Atlantic cod. J Fish Biol 54:477–488

    Article  Google Scholar 

  • Mormède P, Andanson S, Aupérin B, Beerda B, Guémené D, Malmkvist J, Manteca X, Manteuffel G, Prunet P, van Reenen CG, Richard S, Veissier I (2007) Exploration of the hypothalamic–pituitary–adrenal function as a tool to evaluate animal welfare. Physiol Behav 92:317–339

    Article  PubMed  CAS  Google Scholar 

  • Munro AD, Pitcher TJ (1985) Steroid hormones and agonistic behavior in a cichlid teleost, Aequidens pulcher. Hormones Behav 19:353–371

    Article  CAS  Google Scholar 

  • Neave N (2008) Hormones and behaviour: a psychological approach. University Press, Cambridge

    Google Scholar 

  • Nichols DJ, Weisbart M (1984) Plasma cortisol concentrations in Atlantic salmon, Salmo salar: episodic variations, diurnal change, and short term response to adrenocorticotropic hormone. Gen Comp Endocrinol 56:169–176

    Article  PubMed  CAS  Google Scholar 

  • Noakes DLG, Leatherland JF (1977) Social dominance and interrenal cell activity in rainbow trout, Salmo gairdneri (Pisces: Salmonidae). Env Biol Fish 2:131–136

    Article  Google Scholar 

  • North BP, Turnbull JF, Ellis T, Porter MJ, Migaud H, Bron J, Bromage NR (2006) The impact of stocking density on the welfare of rainbow trout (Oncorhynchus mykiss). Aquaculture 255:466–479

    Article  Google Scholar 

  • O’Connor CM, Gilmour KM, Arlinghaus R, van der Kraak G, Cooke SJ (2009) Stress and parental care in a wild teleost fish: insights from exogenous supraphysiological cortisol implants. Physiol Biochem Zoo 82:709–719

    Article  CAS  Google Scholar 

  • Oliveira RF, Canario AVM, Bshary R (1999) Hormones, behaviour and conservation of littoral fishes: current status and prospects for future research. In: Almada VC, Oliveira RF, Gonçalves EJ (eds) behaviour and conservation of littoral fishes. Instituto Superior de Psicologia Aplicada, Lisbon, pp 149–178

    Google Scholar 

  • Olla BL, Davis MW, Schreck CB (1992) Comparison of predator avoidance capabilities with corticosteroid levels induced by stress in juvenile coho salmon. Trans Am Fish Soc 121:544–547

    Article  Google Scholar 

  • Orchinik M (1998) Glucocorticoids, stress and behavior: shifting the timeframe. Hormones Behav 34:320–327

    Article  CAS  Google Scholar 

  • Ortuno J, Esteban MA, Mesequer J (2002a) Effects of phenoxyethanol on the innate immune system of gilthead sea bream (Sparus aurata) exposed to crowding stress. Vet Immunol Immunopathol 89:29–36

    Article  PubMed  CAS  Google Scholar 

  • Ortuno J, Esteban MA, Mesequer J (2002b) Lack of effect of combining different stressors on innate immune responses of sea bream (Sparus auratus L.). Vet Immunol Immunopathol 84:17–27

    Article  PubMed  CAS  Google Scholar 

  • Øverli Ø, Pottinger TG, Carrick TR, Øverli E, Winberg S (2001) Brain monoaminergic activity in rainbow trout selected for high and low stress responsiveness. Brain Behav Evol 57:214–224

    Article  PubMed  Google Scholar 

  • Øverli Ø, Kotzian S, Winberg S (2002a) Effects of cortisol on aggression and locomotor activity in rainbow trout. Hormones Behav 42:53–61

    Article  CAS  Google Scholar 

  • Øverli Ø, Pottinger TG, Carrick TR, Øverli E, Winberg S (2002b) Differences in behaviour between rainbow trout selected for high- and low-stress responsiveness. J Exp Biol 205:391–395

    PubMed  Google Scholar 

  • Øverli Ø, Winberg S, Pottinger TG (2005) Behavioral and neuroendocrine correlates of selection for stress responsiveness in rainbow trout—a review. Int Comp Biol 45:463–474

    Article  Google Scholar 

  • Øverli Ø, Sørensen C, Pulman KGT, Pottinger TG, Korzan W, Summers CH, Nilsson GE (2007) Evolutionary background for stress-coping styles: relationships between physiological, behavioral, and cognitive traits in non-mammalian vertebrates. Neurosci Biobehav Rev 31:396–412

    Article  PubMed  CAS  Google Scholar 

  • Pagnotta A, Brooks L, Milligan L (1994) The potential regulatory role of cortisol in the recovery from exhaustive exercise in rainbow trout. Can J Zool 72:2136–2146

    Article  CAS  Google Scholar 

  • Pavlidis M, Greenwood L, Paalavuo M, Mölsa H, Laitinen JT (1999) The effect of photoperiod on diel rhythms in serum melatonin, cortisol, glucose, and electrolytes in the common dentex, Dentex dentex. Gen Comp Endocrinol 113:240–250

    Article  PubMed  CAS  Google Scholar 

  • Perera TD, Park S, Nemirovskaya Y (2008) Cognitive role of neurogenesis in depression and antidepressant treatment. Neuroscientist 14:326–338

    Article  PubMed  Google Scholar 

  • Peruzzi S, Varsamos S, Chatain B, Fauvel C, Menu B, Falguière Sévére A, Flik G (2005) Haematology and physiological characteristics of diploid and triploid sea bass Dicentrarchus labrax L. Aquaculture 244:359–367

    Article  Google Scholar 

  • Pickering AD (1992) Rainbow trout husbandry: management of the stress response Aquaculture 100:125–139

    Google Scholar 

  • Pickering AD (1993) Growth and stress in fish production. Aquaculture 111:51–63

    Article  Google Scholar 

  • Pickering AD, Pottinger TG (1983) Seasonal and diel changes in plasma cortisol levels of the brown trout, Salmo trutta L. Gen Comp Endocrinol 49:232–239

    Article  PubMed  CAS  Google Scholar 

  • Pickering AD, Pottinger TG (1987a) Poor water quality suppresses the cortisol response of salmonid fish to handling and confinement. J Fish Biol 30:363–374

    Article  Google Scholar 

  • Pickering AD, Pottinger TG (1987b) Crowding causes prolonged leucopenia in salmonid fish, despite interrenal acclimation. J Fish Biol 30:701–712

    Article  Google Scholar 

  • Pickering AD, Stewart A (1984) Acclimation of the interrenal tissue of the brown trout, Salmo trutta L., to chronic crowding stress. J Fish Biol 24:731–740

    Article  Google Scholar 

  • Pickering AD, Schreck C, Maule AG, Kaattari SL, Leatherland J, Farbridge KJ, Vijayan MM, Flett PA, Dickhoff WW (1993) In: Muir JF, Roberts RJ (eds) Stress and adaptation, recent advances in aquaculture IV. Blackwell, London, pp 153–192

  • Planas J, Gutiérrez J, Fernández J, Carrillo M, Canals P (1990) Annual and daily variations of plasma cortisol in sea bass, Dicentrarchus labrax L. Aquaculture 91:171–178

    Article  CAS  Google Scholar 

  • Pottinger TG (2008) The stress response in fish: mechanisms, effects and measurement. In: Branson E (ed) Fish welfare. Blackwell, Oxford, pp 32–48

    Chapter  Google Scholar 

  • Pottinger TG (2010) A multivariate comparison of the stress response in three salmonid and three cyprinid species: evidence for inter-family differences. J Fish Biol 76:601–621

    Article  PubMed  CAS  Google Scholar 

  • Pottinger TG, Carrick TR (2001) Stress responsiveness affects dominant-subordinate relationships in rainbow trout. Hormones Behav 40:419–427

    Article  CAS  Google Scholar 

  • Pottinger TG, Moran TA (1993) Differences in plasma cortisol and cortisone dynamics during stress in two strains of rainbow trout (Oncorhynchus mykiss). J Fish Biol 43:121–130

    Article  CAS  Google Scholar 

  • Pottinger TG, Pickering AD (1992) The influence of social interaction on the acclimation of rainbow trout, Oncorhynchus mykiss (Walbaum) to chronic stress. J Fish Biol 41:435–447

    Article  Google Scholar 

  • Pottinger TG, Pickering AD, Hurley MA (1992) Consistency in the stress response of individuals of two strains of rainbow trout, Oncorhynchus mykiss. Aquaculture 103:275–289

    Article  Google Scholar 

  • Poulsen SB, Jensen LF, Nielsen KS, Malte H, Aarestrup K, Svendsen JC (2011) Behaviour of rainbow trout Oncorhynchus mykiss presented with a choice of normoxia and stepwise progressive hypoxia. J Fish Biol 79:969–979

    Article  PubMed  CAS  Google Scholar 

  • Procarione LS, Barry TP, Malison JA (1999) Effects of high rearing densities and loading rates on the growth and stress responses of juvenile rainbow trout. N Am J Aquacult 61:91–96

    Article  Google Scholar 

  • Prunet P, Cairns MT, Winberg S, Pottinger TG (2008) Functional genomics of stress responses in fish. Rev Fish Sci 16(S1):157–166

    Article  CAS  Google Scholar 

  • Radley JJ, Morrison JH (2005) Repeated stress and structural plasticity in the brain. Ageing Res Rev 4:271–287

    Article  PubMed  Google Scholar 

  • Rance TA, Baker BI, Webley G (1982) Variations in plasma cortisol concentrations over a 24-hour period in the rainbow trout Salmo gairdneri. Gen Comp Endocrinol 48:269–274

    Article  PubMed  CAS  Google Scholar 

  • Redding JM, Patiño R, Schreck CB (1984) Clearance of corticosteroids in yearling coho salmon, Oncorhynchus kisutch, in fresh water and seawater and after stress. Gen Comp Endocrinol 54:433–443

    Article  PubMed  CAS  Google Scholar 

  • Redgate ES (1974) Neural control of pituitary adrenal activity in Cyprinus carpio. Gen Comp Endocrinol 22:35–41

    Article  PubMed  CAS  Google Scholar 

  • Reid SG, Bernier NJ, Perry SF (1998) The adrenergic stress response in fish: control of catecholamine storage and release. Comp Biochem Physiol C 120:1–27

    PubMed  CAS  Google Scholar 

  • Remage-Healey L, Bass AH (2004) Rapid, hierarchical modulation of vocal patterning by steroid hormones. J Neurosci 24:5892–5900

    Article  PubMed  CAS  Google Scholar 

  • Remage-Healey L, Bass AH (2006) A rapid neuromodulatory role for steroid hormones in the control of reproductive behaviour. Brain Res 1126:27–35

    Article  PubMed  CAS  Google Scholar 

  • Remage-Healey L, Nowacek DP, Bass AH (2006) Dolphin foraging sounds suppress calling and elevate stress hormone levels in a prey species, the Gulf toadfish. J Exp Biol 209:4444–4451

    Article  PubMed  CAS  Google Scholar 

  • Roche H, Bogé G (1996) Fish blood parameters as a potential tool for identification of stress caused by environmental factors and chemical intoxication. Mar Environ Res 41:27–43

    Article  CAS  Google Scholar 

  • Roque A, Yavuzcan Yildiz H, Carazo I, Duncan N (2010) Physiological stress responses of sea bass (Dicentrarchus labrax) to hydrogen peroxide (H2O2) exposure. Aquaculture 304:104–107

    Article  Google Scholar 

  • Rose JD (2002) The neurobehavioral nature of fishes and the question of awareness and pain. Rev Fish Sci 10:1–38

    Article  Google Scholar 

  • Rose JD (2007) Anthropomorphism and ‘mental welfare’ of fishes. Dis Aquat Org 75:139–154

    Article  PubMed  Google Scholar 

  • Rotllant J, Tort L (1997) Cortisol and glucose responses after acute stress by net handling in the sparid red porgy previously subjected to crowding stress. J Fish Biol 51:21–28

    Article  PubMed  CAS  Google Scholar 

  • Rotllant J, Arends RJ, Mancera JM, Flik G, Wendelaar Bonga SE, Tort L (2000) Inhibition of HPI axis response to stress in gilthead sea bream (Sparus aurata) with physiological plasma levels of cortisol. Fish Physiol Biochem 23:13–22

    Article  CAS  Google Scholar 

  • Rotllant J, Balm PHM, Pérez-Sánchez J, Wendelaar-Bonga SE, Tort L (2001) Pituitary and interrenal function in gilthead sea bream (Sparus aurata L., Teleostei) after handling and confinement stress. Gen Comp Endocrinol 121:333–342

    Article  PubMed  CAS  Google Scholar 

  • Rotllant J, Ruane NM, Caballero MJ, Montero D, Tort L (2003) Confinement stress response in sea bass (Dicentrarchus labrax) is characterised by an increased biosynthetic capacity of interrenal tissue, with no effect on ACTH sensitivity. Comp Biochem Physiol 136A:613–620

    CAS  Google Scholar 

  • Rotllant J, Ruane NM, Dinis MT, Canario AVM, Power DM (2006) Intra-adrenal interactions in fish: catecholamine stimulated cortisol release in sea bass (Dicentrarchus labrax L.). Comp Biochem Physiol A 143:375–381

    Google Scholar 

  • Ruane NM, Carballo EC, Komen J (2002) Increased stocking density influences the acute physiological stress response of common carp Cyprinus carpio (L.). Aquacult Res 33:777–784

    Article  Google Scholar 

  • Ruyet JP-L, Labbé L, Bayon NL, Sévère A, Roux AL, Delliou HL, Quéméner L (2008) Combined effects of water quality and stocking density on welfare and growth of rainbow trout (Oncorhynchus mykiss). Aquat Liv Res 21:185–195

    Article  CAS  Google Scholar 

  • Sánchez JA, López-Olmeda JF, Blanco-Vives B, Sánchez-Vázquez FJ (2009) Effects of feeding schedule on locomotor activity rhythms and stress response in sea bream. Physiol Behav 98:125–129

    Article  PubMed  CAS  Google Scholar 

  • Sandhu N, Vijayan MM (2011) Cadmium-mediated disruption of cortisol biosynthesis involves suppression of corticosteroidogenic genes in rainbow trout. Aquat Toxicol 103:92–100

    Article  PubMed  CAS  Google Scholar 

  • Sandi C (1996) Novelty-related rapid locomotor effects of corticosterone in rats. Eur J Neurosci 8:794–800

    Article  PubMed  CAS  Google Scholar 

  • Santos GA, Schrama JW, Mamauag REP, Rombout JHWM, Verreth JAJ (2010) Chronic stress impairs performance, energy metabolism and welfare indicators in European seabass (Dicentrarchus labrax): the combined effects of fish crowding and water quality deterioration. Aquaculture 299:73–80

    Article  Google Scholar 

  • Santulli A, Modica A, Messina L, Ceffa L, Curatolo A, Rivas G, Fabis G, D’Amelio V (1999) Biochemical responses of European sea bass (Dicentrarchus labrax L.) to the stress induced by off shore experimental seismic prospecting. Mar Pollut Bull 38:1105–1114. doi:10.1016/S0025-326X(99)00136-8

  • Schjolden J, Basic D, Winberg S (2009) Aggression in rainbow trout is inhibited by both MR and GR antagonists. Physiol Behav 98:625–630

    Article  PubMed  CAS  Google Scholar 

  • Schreck CB (1981) Stress and compensation in teleostean fishes: response to social and physical factors. In: Pickering AD (ed) Stress and fish. Academic Press, London, pp 295–321

    Google Scholar 

  • Schreck CB (1982) Stress and rearing of salmonids. Aquaculture 28:241–249

    Article  Google Scholar 

  • Schreck CB (1990) Physiological, behavioural and performance indicators of stress. Am Fish Soc Symp 8:29–37

    Google Scholar 

  • Schreck CB (2010) Stress and fish reproduction: the roles of allostasis and hormesis. Gen Comp Endocrinol 165:549–556

    Article  PubMed  CAS  Google Scholar 

  • Schreck CB, Patino R, Pring CK, Winton JR, Holway JE (1985) Effects of rearing density on indices of smoltification and performance of coho salmon, Oncorhynchus kisutch. Aquaculture 45:345–358

    Article  Google Scholar 

  • Scott AP, Hirschenhauser K, Bender N, Oliveira R, Earley RL, Sebire M, Ellis T, Pavlidis M, Hubbard PC, Huertas M, Canario A (2008) Non-invasive measurement of steroids in fish-holding water: important considerations when applying the procedure to behaviour studies. Behaviour 145(Suppl. SI):1307–1328

    Google Scholar 

  • Seidelin M, Madsen SS, Byrialsen A, Kristiansen K (1999) Effects of insulin-like growth factor-I and cortisol on Na+, K+-ATPase expression in osmoregulatory tissues of brown trout (Salmo trutta). Gen Comp Endocrinol 113:331–342

    Article  PubMed  CAS  Google Scholar 

  • Shelbourne JE (1975) Marine fish cultivation: pioneering studies on the culture of the larvae of the plaice (Pleuronectes platessa L.) and the sole (Solea solea L.). MAFF Fish Investig Ser II 27(9):29

    Google Scholar 

  • Shrimpton JM, McCormick SD (1999) Responsiveness of gill Na+/K+-ATPase to cortisol is related to gill corticosteroid receptor concentration in juvenile rainbow trout. J Exp Biol 202:987–995

    PubMed  CAS  Google Scholar 

  • Silva P, Martins CIM, Engrola S, Marino G, Øyvind Ø, Conceição L (2010) Individual variation in stress physiology and behaviour in the flatfish Senegalese sole: evidences for coping styles. Appl Anim Behav Sci 124:75–81

    Article  Google Scholar 

  • Singley JA, Chavin W (1975) Serum cortisol in normal goldfish (Carassius auratus L.). Comp Biochem Physiol 50A:77–82

    Article  Google Scholar 

  • Sink TD, Lochmann RT, Fecteau KA (2008) Validation, use and disadvantages of enzyme-linked immunosorbent assay kits for detection of cortisol in channel catfish, largemouth bass, red pacu, and golden shiners. Fish Physiol Biochem 34:95–101

    Article  PubMed  CAS  Google Scholar 

  • Sloman KA, Metcalfe NB, Taylor AC, Gilmour KM (2001) Plasma cortisol concentrations before and after social stress in rainbow trout and brown trout. Physiol Biochem Zoo 74:383–389

    Article  CAS  Google Scholar 

  • Sloman KA, Montpetit CJ, Gilmour KM (2002) Modulation of catecholamine release and cortisol secretion by social interactions in the rainbow trout, Oncorhynchus mykiss. Gen Comp Endocrinol 127:136–146

    Article  PubMed  CAS  Google Scholar 

  • Small BC (2005) Effect of fasting on nychthemeral concentrations of plasma growth hormone (GH), insulin-like growth factor I (IGF-I), and cortisol in channel catfish (Ictalurus punctatus). Comp Biochem Physiol 142:217–223

    Article  CAS  Google Scholar 

  • Sneddon LU (2009) Pain perception in fish: indicators and endpoints. ILAR J 50:338–342

    PubMed  CAS  Google Scholar 

  • Sneddon LU, Braithwaite VA, Gentle MJ (2003) Do fishes have nociceptors? Evidence for the evolution of a vertebrate sensory system. Proc R Soc Lond B Biol Sci 270:1115–1121

    Article  Google Scholar 

  • Sørensen C, Nilsson GE, Summers CH, Øverli Ø (2011a) Social stress reduces forebrain cell proliferation in rainbow trout (Oncorhynchus mykiss). Behav Brain Res (in press)

  • Sørensen C, Bohlin LC, Øverli Ø, Nilsson GE (2011b) Cortisol reduces cell proliferation in the telencephalon of rainbow trout (Oncorhynchus mykiss). Physiol Behav 102:518–523

    Article  PubMed  CAS  Google Scholar 

  • Stolte EH, de Mazon AF, Leon-Koosterziel KM, Jesiak M, Bury NR, Sturm A, Huub FJ, Savelkoul HFJ, Verburg van Kemenade BML, Flik G (2008) Corticosteroid receptors involved in stress regulation in common carp, Cyprinus carpio. J Endocrinol 198:403–417

    Article  PubMed  CAS  Google Scholar 

  • Sumpter JP (1992) The stress response and its consequences in cultured fish. Bul Inst Zool Acad Sinica Monogr 16:229–236

    CAS  Google Scholar 

  • Sumpter JP (1993) The deleterious effects of stress and their significance to aquaculture. In: Barnabé G, Kestemont P (eds) Production, environment and quality. European Aquaculture Society Special Publication No. 18. Ghent, Belgium, pp 157–165

  • Sumpter JP (1997) The endocrinology of stress. In: Iwama GK, Pickering AD, Sumpter JP, Schreck CB (eds) Fish stress and health in aquaculture. Cambridge University Press, Cambridge, pp 95–118

    Google Scholar 

  • Sumpter JP, Pottinger TG, Weaver MR, Campbell PM (1994) The wide ranging effects of stress on fish. In: Davey KG, Peter RE, Tobe SS (eds) Perspectives in comparative endocrinology. NRC, Canada, pp 535–538

  • Teles M, Gravato C, Pacheco M, Santos MA (2004) Juvenile sea bass biotransformation, genotoxic and endocrine responses to β-naphthoflavone, 4-nonylphenol and 17β-estradiol individual and combined exposures. Chemosphere 57:147–158

    Article  PubMed  CAS  Google Scholar 

  • Teles M, Pacheco M, Santos MA (2006) Biotransformation, stress and genotoxic effects of 17β-estradiol in juvenile sea bass (Dicentrarchus labrax L.). Environ Int 32:470–477

    Article  PubMed  CAS  Google Scholar 

  • Thorpe JE, McConway MG, Miles MS, Muir JS (1987) Diel and seasonal changes in resting plasma cortisol levels in juvenile Atlantic salmon, Salmo salar L. Gen Comp Endocrinol 65:19–22

    Article  PubMed  CAS  Google Scholar 

  • Tintos A, Míguez JM, Mancera JM, Soengas JL (2006) Development of a microtitre plate indirect ELISA for measuring cortisol in teleosts, and evaluation of stress responses in rainbow trout and gilthead sea bream. J Fish Biol 68:251–263

    Article  CAS  Google Scholar 

  • Tort L (2010) Stress in farmed fish: its consequences in health and performance. In: Koumoundouros G (ed) Recent advances in aquaculture research. Transworld Research Network, Trivandrum, pp 55–84

    Google Scholar 

  • Tort L, Montero D, Robaina L, Fernández-Palacios H, Izquierdo MS (2001) Consistency of stress response to repeated handling in the gilthead sea bream, Sparus aurata. Aquacult Res 32:593–598

    Article  Google Scholar 

  • Tort L, Puigcerver M, Crespo S, Padrós F (2002) Cortisol and haematological response in sea bream and trout subjected to the anaesthetics clove oil and 2-phenoxyethanol. Aquacult Res 33:907–910

    Article  CAS  Google Scholar 

  • Tort L, Pavlidis M, Woo NYS (2011) Stress and welfare in sparid fishes. In: Pavlidis M, Mylonas C (eds) Sparidae. Biology and Aquaculture. Wiley-Blackwell, Oxford, pp 75–94

    Google Scholar 

  • Turnbull J, Bell A, Adams C, Bron J, Huntingford F (2005) Stocking density and welfare of cage farmed Atlantic salmon: application of a multivariate analysis. Aquaculture 243:121–132

    Article  Google Scholar 

  • Tytler P, Hawkins AD (1981) Vivisection, anaesthetics and minor surgery. In: Hawkins AD (ed) Aquarium systems. Academic Press, London, pp 247–278

    Google Scholar 

  • Uchida K, Kaneko T, Tagawa M, Hirano T (1998) Localization of cortisol receptor in branchial chloride cells in chum salmon fry. Gen Comp Endocrinol 109:175–185

    Article  PubMed  CAS  Google Scholar 

  • van de Nieuwegiessen PG, Boerlage AS, Verreth JAJ, Schrama JW (2008) Assessing the effects of a chronic stressor, stocking density, on welfare indicators of juvenile African catfish, Clarias gariepinus Burchell. App Anim Behav Sci 115:233–243

    Article  Google Scholar 

  • Varsamos S, Flik G, Pepin JF, Wendelaar Bonga SE, Breuil G (2006) Husbandry stress during early life stages affects the stress response and health status of juvenile sea bass, Dicentrarchus labrax. Fish Shellfish Immunol 20:83–96

    Article  PubMed  CAS  Google Scholar 

  • Vazzana M, Cammarata M, Cooper EL, Parrinello N (2002) Confinement stress in sea bass (Dicentrarchus labrax) depresses peritoneal leukocyte cytotoxicity. Aquaculture 210:231–243

    Article  CAS  Google Scholar 

  • Verburg-van Kemenade BML, Stolte EH, Metz JR, Chadzinska M (2009) Neuroendocrine-immune interactions in teleost fish. Fish Neuroendocrinol, Elsevier, pp 313–364

    Google Scholar 

  • Vijayan MM (2011) Hormone response to stress. In: Farrell AP (ed) Encyclopedia of fish physiology from genome to environment. Elsevier, San Diego

    Google Scholar 

  • Volkoff H, Xu M, MacDonald E, Hoskins L (2009) Aspects of hormonal regulation of appetite in fish with emphasis on goldfish, Atlantic cod and winter flounder: notes on actions and responses to nutritional, environmental and reproductive changes. Comp Biochem Physiol A 153:8–12

    Google Scholar 

  • Weber ED, Borthwick SM, Helfrich LA (2002) Plasma cortisol response of juvenile chinook salmon to passage through Archimedes lifts and a Hidrostal pump. N Am J Fish Manage 22:563–570

    Article  Google Scholar 

  • Wedemeyer GA, Barton BA, McLeay DJ (1990) Stress and acclimation. In: Schreck CB, Moyle PB (eds) Methods for fish biology. Am Fish Soc, Bethesda, Maryland, pp 451–489

    Google Scholar 

  • Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625

    PubMed  CAS  Google Scholar 

  • Winberg S, Lepage O (1998) Elevation of brain 5-HT activity, POMC expression, and plasma cortisol in socially subordinate rainbow trout. Am J Physiol Reg Int Comp Physiol 274:R645–R654

    CAS  Google Scholar 

  • Wolkowitz OM, Burke H, Epel ES, Reus VL (2009) Glucocorticoids: mood, memory and mechanisms. Ann N Y Acad Sci 1179:19–40

    Google Scholar 

  • Wong EYH, Herbert J (2006) Raised circulating corticosterone inhibits neuronal differentiation of progenitor cells in the adult hippocampus. Neuroscience 137:83–92

    Article  PubMed  CAS  Google Scholar 

  • Wong S, Dykstra M, Campbell J, Earley R (2008) Measuring water-borne cortisol in convict cichlids (Amatitlania nigrofasciata): is the procedure a stressor? Behaviour 1245:1283–1305

    Article  Google Scholar 

  • Yamada H, Satoh R, Ogoh M, Takaji K, Fujimoto Y, Hakuba T, Chiba H, Kambegawa A, Iwata M (2002) Circadian changes in serum concentrations of steroids in Japanese char Salvelinus leucomaenis at the stage of final maturation. Zool Sci 19:891–898

    Article  PubMed  CAS  Google Scholar 

  • Yeates JW, Main DSCJ (2008) Assessment of positive welfare: a review. Vet J 175:293–300

    Article  PubMed  CAS  Google Scholar 

  • Yildiz YH, Ergonul MB (2010) Is prophylactic formalin exposure a stress source for gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax)? Ankara Univ Vet Fak Derg 57:113–118

    Google Scholar 

  • Zhao CM, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This review paper represents an output from the COST Action 867 ‘Welfare of Fish in European Aquaculture’ supported by the EU Commission. The text represents the authors’ views. Thanks to Neil Ruane (Marine Institute, Co. Galway, Ireland) and the anonymous referees for helpful input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Ellis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, T., Yildiz, H.Y., López-Olmeda, J. et al. Cortisol and finfish welfare. Fish Physiol Biochem 38, 163–188 (2012). https://doi.org/10.1007/s10695-011-9568-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-011-9568-y

Keywords

Navigation