Skip to main content
Log in

Representation of the Impact of Smoke on Agent Walking Speeds in Evacuation Models

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

This paper addresses the problem of reproducing the effect of different visibility conditions on people’s walking speed when using evacuation models. In particular, different strategies regarding the use of default settings and embedded data-sets are investigated. Currently, the correlation between smoke and walking speed is typically based on two different sets of experimental data produced by (1) Jin and (2) Frantzich and Nilsson. The two data-sets present different experimental conditions, but are often applied as if equivalent. In addition, models may implement the same data-sets in different ways. To test the impact of this representation within evacuation tools, the authors have employed six evacuation models, making different assumptions and employing different data-sets (FDS+EVAC, Gridflow, buildingEXODUS, STEPS, Pathfinder and Simulex). A simple case-study is simulated in order to investigate the sensitivity of the representation of two key variables: (1) initial occupant speeds in clear conditions, (2) extinction coefficients. Results show that (1) evacuation times appear to be consistent if models use the same data-sets and interpret the smoke vs speed correlation in the same manner (2) the same model may provide different results if applying different data-sets or interpretations for configuring the inputs; i.e. default settings are crucial for the calculation of the model results (3) models using embedded data-sets/assumptions require user expertise, experience and understanding to be employed appropriately and the results evaluated in a credible manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Gwynne S, Galea ER, Lawrence PJ, Owen M, Filippidis L (1999) A review of the methodologies used in the computer simulation of evacuation from the built environment. Build Environ 34:741–749

    Article  Google Scholar 

  2. Kuligowski ED, Peacock RD, Hoskins BL (2010) A review of building evacuation models, 2nd edn. NIST Technical Note 1680, National Institute of Standards and Technology, Gaithersburg

  3. Santos G, Aguirre BE (2005) Critical review of emergency evacuation simulation models. In: Peacock RD, Kuligowski ED (eds) Workshop on building occupant movement during fire emergencies. National Institute of Standards and Technology, Gaithersburg, pp 27–52

    Google Scholar 

  4. Tavares RM (2009) Evacuation processes versus evacuation models: Quo Vadimus? Fire Technol 45:419–430. doi:10.1007/s10694-008-0063-7

    Google Scholar 

  5. Ronchi E, Kinsey M (2012) Evacuation models of the future. Insights from an online survey on user’s experiences and needs. In: Capote J et al. (eds) Advanced research workshop evacuation and human behaviour in emergency situations EVAC11, Santander, pp 145–155

  6. Ronchi E, Alvear D, Berloco N, Capote J, Colonna P, Cuesta A (2012) The evaluation of different evacuation models for assessing road tunnel safety analysis. Tunn Undergr Space Technol 30:74–84. doi:10.1016/j.tust.2012.02.008

  7. Gwynne SMV, Kuligowski E (2010) The faults with default. In: Proceedings of the twelth international symposium INTERFLAM. Interscience Communications Ltd, London, pp 1473–1478

  8. Ronchi E, Gwynne SMV, Purser DA (2011) The impact of default settings on evacuation model results: a study of visibility conditions vs occupant walking speeds. In Capote J et al. (eds) Advanced research workshop evacuation and human behaviour in emergency situations EVAC11, Santander, pp 81–95

  9. Kuligowski ED (2011) Predicting human behavior during fires. Fire Technol. doi:10.1007/s10694-011-0245-6.

  10. Gwynne SMV, Rosenbaum ER (2008) Employing the hydraulic model in assessing emergency movement. In: DiNenno PJ, et al. (eds) The SFPE handbook of fire protection engineering, 4th edn. National Fire Protection Association, Quincy, MA, pp 3-396–3-373

  11. Jin T (1976) Visibility through fire smoke (No. 42). Report of Fire Research Institute of Japan

  12. Frantzich H, Nilsson D (2003) Utrymning genom tät rök: beteende och förflyttning, 75 p., Report 3126, Department of Fire Safety Engineering, Lund University, Sweden

  13. Korhonen T, Hostikka S (2009) Fire dynamics simulator with evacuation: FDS+Evac technical reference and user’s guide, FDS 5.4.3, Evac 2.2.1

  14. Bensilum M, Purser DA (2003) Gridflow: an object-oriented building evacuation model combining pre-movement and movement behaviours for performance-based design. Fire Saf Sci 7:941–952

    Article  Google Scholar 

  15. Galea ER, Gwynne S, Lawrence PJ, Filippidis L, Blackshields D, Cooney D (2004) buildingEXODUS V4.1 user guide and technical manual. University of Greenwich

  16. Mott MacDonald Simulation Group (2011) Simulation of transient evacuation and pedestrian movements STEPS user manual, 4.1 version

  17. Thunderhead Engineering (2011) Pathfinder 2011. Technical Reference

  18. Thompson PA, Marchant EW (1995) A computer model for the evacuation of large building populations. Fire Saf Sci. doi:10.1016/0379-7112(95)00019-P

    Google Scholar 

  19. Bryan JL (2002) Behavioral response to fire and smoke. In DiNenno PJ et al. (eds) The SFPE handbook of fire protection engineering, 3rd edn. National Fire Protection Association, Quincy, pp 3-315–3-341.

  20. Wright, MS, Cook, GK, Webber, GMB (2001). The effects of smoke on people’s walking Speeds using overhead lighting and Wayguidance provision. In: Proceedings of the 2nd international symposium on human behaviour in fire. MIT, Boston, pp 275–284, ISBN 0953231267.

  21. Wood P (1972) The behaviour of people in fires. Fire Research Note No. 953, Fire Research Station

  22. Xie H (2011) Investigation into the interaction of people with signage systems and its implementation within evacuation models. University of Greenwich, Dissertation

    Google Scholar 

  23. Jin T (2008) Visibility and human behavior in fire smoke. In Di Nenno PJ et al. (eds) The SFPE handbook of fire protection engineering, 4th edn. NFPA, Quincy, MA, pp 2/54–2/66, ISBN 0-87765-821-8

  24. Jin T, Yamada T (1990) Experimental study on human emotional instability in smoke filled corridor: part 2. J Fire Sci 1990(8):124. doi:10.1177/073490419000800204

    Article  Google Scholar 

  25. Purser DA (2009) Application of human behaviour and toxic hazard analysis to the validation of CFD modelling for the Mont Blanc Tunnel fire incident. In: Capote J et al. (eds) Fire protection and life safety in buildings and transportation systems proceedings, Santander, pp 23–57

  26. Purser DA (2008) Assessment of hazards to occupants from smoke, toxic gases and heat. In: DiNenno PJ et al. (eds) SFPE handbook of fire protection engineering, 4th edn. National Fire Protection Association, Quincy, MA

  27. McGrattan K, Hostikka S, Floyd J, Baum H, Rehm R, Mell W, McDermott R (2008) Fire dynamics simulator (version 5), technical reference guide. National Institute of Standards and Technology Special Publication 1018-5, Department of Commerce, Gaithersburg, MD

  28. Zhang Q, Rubini PA (2011) Modelling of light extinction by soot particles. Fire Saf J 46:96–103. doi:10.1016/j.firesaf.2010.11.00

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Daniel Nilsson for providing the data-set of the tunnel experiments made by the Department of Fire Safety Engineering and Systems Safety at Lund University and for his valuable help in their interpretation. The authors wish also to acknowledge the model developers for providing their software and the support in their use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ronchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronchi, E., Gwynne, S.M.V., Purser, D.A. et al. Representation of the Impact of Smoke on Agent Walking Speeds in Evacuation Models. Fire Technol 49, 411–431 (2013). https://doi.org/10.1007/s10694-012-0280-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-012-0280-y

Keywords

Navigation