Ait-Sahalia, Y. (1996) Nonparametric pricing of interest rate derivatives securities,

*Econometrica*
**64**, 527–560.

CrossRefGoogle ScholarAit-Sahalia, Y. (1999) Transition densities for interest rate and other nonlinear diffusions,

*J. Finance*
**54**, 1361–1395.

CrossRefGoogle ScholarAit-Sahalia, Y. (2002) Maximum likelihood estimation of discretely sampled diffusions: a closed form approximation approach,

*Econometrica*
**70**, 223–262.

CrossRefGoogle ScholarAit-Sahalia, Y. (2004) Closed-form likelihood expansions for multivariate diffusion, Tech. Report.

Andersen, T. G. and Lund, J. (1997) Estimating continuous-time stochastic volatility models of short-term interest rate,

*J. Econom*.

**77**, 343–377.

CrossRefGoogle ScholarBanon, G. (1978) Nonparametric identification for diffusion processes,

*SIAM J. Control Optim*.

**16**, 380–395.

CrossRefGoogle ScholarBanon, G. and Nguyen, H. T. (1981) Recursive estimation of diffusion models,

*SIAM J. Control Optim*.

**19**, 676–685.

CrossRefGoogle ScholarBlack, F. and Scholes, M. (1973) The prices of options and corporate liabilities,

*J. Polit. Econom.*
**81**, 637–654.

CrossRefGoogle ScholarBibby, B. M. and Sorensen, M. (1995) Martingale estimation function for discrete observed diffusion processes,

*Bernoulli*
**1**, 17–39.

CrossRefGoogle ScholarBibby, B. M. and Sorensen, M. (1996) Estimation for discrete observed diffusion processes: a review,

*Theory Stoch. Proces.*
**2**, 49–56.

Google ScholarBibby, B. M. and Sorensen, M. (1997) A hyperbolic diffusion model for stock prices,

*Finance Stoch*.

**1**, 25–41.

CrossRefGoogle ScholarBibby, B. M. and Sorensen, M. (2001). Simplified estimating functions for diffusion models with a high-dimensional parameters,

*Scand. J. Statist*.

**28**, 99–112.

CrossRefGoogle ScholarBouchaud, J. P. and Cont, R. (1998) A Langevin approach to stock market fluctuations and crashes,

*Eur. Phys. J.*
**B6**, 543–550.

Google ScholarBrennan, M. J. and Xia, Y. (2005) Persistence, predictability, and portfolio planning. Working Paper 25-05, Rodney L. White Center for Financial Research, Wharton School, University of Pennsylvania.

Cappe, O., Moulines, E., and Ryden T. (2005) *Inference in Hidden Markov Models*. Springer.

Chan, K. C., Karolyi, G. A., Longstaff F. A. and Sanders, A. B. (1992) An empirical comparison of alternative models of the short-term interest rate,

*J. Finance*
**47**, 1209–1227.

CrossRefGoogle ScholarChapman, D. A. and Pearson, N. D. (2000) Is the short rate drift actually nonlinear?,

*J. Finance*
**LV**, 355–388.

CrossRefGoogle ScholarChen, R. and Scott, L. (2003) Multi-factor Cox-Ingersoll-Ross models of the term structure: estimates and test from a Kalman filter model,

*J. Real Estate Finan. Econom*.

**27**, 143–172.

CrossRefGoogle ScholarChiarella, C., Hung, H., and To, T. D. (2005) The volatility structure of the fixed income market under the HJM framework: a nonlinear filtering approach, Quantitative Finance Research Centre, Working Paper 151, Sydney.

Christensen, B. J., Poulsen R., and Sorensen, M. (2001) Optimal inference in diffusion models of short rate of interest, Working paper 102, Center for Analytical Finance, Aarhus School of Business.

Clement, E. (1995) Bias correction for the estimation of discretized diffusion processes from an approximate likelihood function,

*Theory Prob. Appl*.

**42**, 283–288.

CrossRefGoogle ScholarClement, E. (1997) Estimation of diffusion processes by simulated moment methods.

*Scand. J. Statist*.

**24**, 353–369.

CrossRefGoogle ScholarCox, J. C., Ingersoll, J. E., and Ross, S. A. (1985) A theory of the term structure of interest rates,

*Econometrica*
**53**, 285–408.

Google ScholarDel Moral, P., Jacod, J. and Protter P. (2001) The Monte-Carlo method for filtering with discrete-time observations,

*Prob. Theory Relat. Fields*
**120**, 346–368.

CrossRefGoogle ScholarDurham, G. B. (2003) Likelihood-based specification analysis of continuous-time models of the short-term interest rate,

*J. Fin. Econom*.

**70**, 463–487.

CrossRefGoogle ScholarDurham, G. B. and Gallant, A. R. (2002) Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes,

*J. Bus. Econ. Statist*.

**20**, 297–316.

CrossRefGoogle ScholarEgorov, A. V., Li, H. T., and Xu, Y. W. (2003) Maximum likelihood estimation of time-inhomogeneous diffusions,

*J. Economet.*
**114**, 107–139.

CrossRefGoogle ScholarElerian, O., Chib, S., and Shephard, N. (2001) Likelihood inference for discretely observed non-linear diffusions,

*Econometrica*
**69**, 959–993.

CrossRefGoogle ScholarEraker, B. (2001) MCMC analysis of diffusions models with applications to finance.

*J. Bus. Econ. Statist*.

**19**, 177–191.

CrossRefGoogle ScholarFama, E. E. (1965) The behavior of stock market price,

*J. Bus.*
**38**, 34–105.

CrossRefGoogle ScholarFan, J. and Zhang, C. (2003) A reexamination of diffusion estimators with applications to financial model validation,

*JASA*
**98**, 118–134.

Google ScholarFerson, W. E. and Foerster, S. R. (1994) Finite sample properties of the Generalized Method of Moments in tests of conditional asset pricing models,

*J. Fin. Econ.*
**36**, 29–55.

CrossRefGoogle ScholarFlorens-Zmirou, D. (1989) Approximate discrete-time schemes for statistics of diffusion processes,

*Statistics*
**20**, 547–557.

CrossRefGoogle ScholarFlorens-Zmirou, D. (1993) On estimating the diffusion coefficient from discrete observations,

*J. Appl. Probab*.

**30**, 790–804.

CrossRefGoogle ScholarFrench, K. R. (1980) Stock returns and the weekend effect,

*J. Fin. Econ*.

**8**, 55–69.

CrossRefGoogle ScholarGallant, A. R. and Tauchen, G. (1996) Which moments to match?,

*Economet. Theory*
**12**, 657–681.

Google ScholarGallant, A. R. and Tauchen, G. (1997) Estimation continuous-time models for stock returns and interest rate,

*Macroeconom. Dyn.*
**1**, 135–168.

Google ScholarGallant, A. R. and Tauchen, G. (1998) Reprojecting partially observed systems with application to interest rate diffusions,

*JASA*
**93**, 10–24.

Google ScholarGenon-Catalot, V., Jeantheau, T. and Laredo, C. (1999) Parameter estimation for discretely observed stochastic volatility models,

*Bernoulli*
**5**, 855–872.

CrossRefGoogle ScholarGenon-Catalot, V., Jeantheau, T., and Laredo, C. (2000) Stochastic volatility models as hidden Markov models and statistical applications,

*Bernoulli*
**6**, 1051–1079.

CrossRefGoogle ScholarGenon-Catalot, V., Laredo, C., and Picard, D. (1992) Nonparametric estimation of the diffusion coefficient by wavelets methods,

*Scand. J. Statist*.

**19**, 317–335.

Google ScholarGeyer, A. L. J. and Pichler, S. (1999) A state-space approach to estimate and test multi-factor Cox-Ingersoll-Ross models of term structure,

*J. Fin. Res.*
**22**, 107–130.

Google ScholarGhysels, E., Gourieroux, C., and Jasiak, J. (1998) Market time and asset price movements: theory and estimation. In D. Hand and S. Jacka (eds)

*Statistics in Finance*, Edward Arnold, London, p. 307–332.

Google ScholarGhysels, E., Harvey, A. C., and Renault, E. (1996) Stochastic volatility. In (G. S. Maddala and C. R. Rao eds.), Handbook of Statistics, **14**, 119–191.

Gourieroux, C., Monfort, A. and Renault E. (1993) Indirect inference,

*J. Appl. Economet.*
**3**, S85–S118.

CrossRefGoogle ScholarHansen, L. P. (1982) Large sample properties of generalized method of the moments estimators,

*Econometrica*
**50**, 1029–1054.

CrossRefGoogle ScholarHansen, L. P., Heaton, J. C. and Yaron, A. (1996) Finite-sample properties of some alternative GMM estimators,

*J. Bus. Econ. Statist.*
**14**, 262–280.

CrossRefGoogle ScholarHansen, L. P. and Scheinkman, J. A. (1995) Back to the future: generating moment implications for continuous-time Markov processes,

*Econometrica*
**63**, 767–804.

CrossRefGoogle ScholarHeston, S. L. (1993) A closed-form solution for options with stochastic volatility with applications to bond and currency options,

*Rev. Fin. Stud*.

**6**, 327–343.

CrossRefGoogle ScholarHeyde, C. G. (1997)

*Quasi-likelihood and its Applications*, Springer-Verlag, New York.

Google ScholarHoffmann, M. (1999). Adaptive estimation in diffusion processes,

*Stochast. Process. Appl*.

**79**, 135–163.

CrossRefGoogle ScholarHull, J. and White, A. (1987) Hedging the risks from writing foreign currency options,

*J. Int. Money Fin*.

**6**, 131–152.

CrossRefGoogle ScholarHurn, A. S., Lindsay, K. A., and Martin, V. I. (2003) On the efficacy of simulated maximum likelihood for estimating parameters of stochastic differential equations,

*J. Time Ser. Anal.*
**24**, 43–63.

CrossRefGoogle Scholarlino, M. and Ozaki, T. (2000) A nonlinear model for financial dynamics. In Proceeding of the International Symposium on Frontiers of Time Series Modelling, The Institute of Statistical Mathematics, Tokyo, February 2000, 334–335.

Jacobsen, M. (2001) Discretely observed diffusions: classes of estimating functions and small Δ-optimality,

*Scand. J. Statist*.

**28**, 123–149.

CrossRefGoogle ScholarJacod, J. (2000) Non-parametric kernel estimation of the coefficient of a diffusion,

*Scand. J. Statist*.

**27**, 83–96.

CrossRefGoogle ScholarJazwinski, A. H. (1970) *Stochastic Processes and Filtering Theory*, Academic Press.

Jensen, B. and Poulsen, R. (2002) Transition densities diffusions processes: numerical comparison of approximation techniques,

*J. Derivatives*
**9**, 18–32.

CrossRefGoogle ScholarJensen, J. L. and Petersen, N. V. (1999) Asymptotic normality of the maximin likelihood estimator in state space models,

*Ann. Statist*.

**27**, 514–535.

CrossRefGoogle ScholarJiang, G. J., (1998) Nonparametric modeling of US interest rate term structure dynamics and implications on the prices of derivative securities,

*J. Fin. Quant. Anal*.

**33**, 465–497.

CrossRefGoogle ScholarJiang, G. J. and Knight, J. L. (1997). A nonparametric approach to the estimation of diffusion processes, with an application to a short-term interest-rate model,

*Economet. Theory*
**13**, 615–645.

CrossRefGoogle ScholarJimenez, J. C. and Ozaki, T. (2003) Local Linearization Filters for nonlinear continuous-discrete state space models with multiplicative noise,

*Int. J. Control*
**76**, 1159–1170.

CrossRefGoogle ScholarJimenez, J. C. and Ozaki, T. (2006) An approximate innovation method for the estimation of diffusion processes from discrete data,

*J. Time Ser. Anal.*
**27**, 77–97.

CrossRefGoogle ScholarJohnson, H. and Shanno, D. (1987) Options pricing when the variance is changing,

*J. Fin. Quant. Anal*.

**22**, 143–152.

CrossRefGoogle ScholarKessler, M. (1997) Estimation of an ergodic diffusion from discrete observations,

*Scand. J. Statist*.

**24**, 211–229.

CrossRefGoogle ScholarKessler, M. (2000) Simple and explicit estimating functions for a discretely observed diffusion process,

*Scand. J. Statist*.

**27**, 65–82.

CrossRefGoogle ScholarKessler, M. and Paredes S. (2002) Computational aspects related to martingale estimating functions for a discretely observed diffusion,

*Scand. J. Statist*.

**29**, 425–440.

CrossRefGoogle ScholarKessler, M. and Sorensen M. (1999) Estimating equations based on eigenfunctions for a discretely observed diffusion process,

*Bernoulli*
**5**, 299–314.

CrossRefGoogle ScholarLo, A. W. (1988) Maximum likelihood estimation of generalized Ito processes with discretely sample data,

*Econ. Theory*
**4**, 231–247.

Google ScholarNguyen, H. T. and Tuan, D. P. (1982) Identification of nonstationary diffusion model by the method of sieves,

*SIAM J. Control Optim*.

**20**, 603–611.

CrossRefGoogle ScholarNielsen, J. N. and Madsen, H. (2001) Applying the EKF to stochastic differential equations with level effects,

*Automatica*
**37**, 107–112.

CrossRefGoogle ScholarNielsen, J. N., Madsen, H., and Young, P. C. (2000a) Parameter estimation in stochastic differential equations: an overview,

*Ann. Rev. Control*
**24**, 83–94.

Google ScholarNielsen J. N., Vestergaard M., and Madsen H. (2000b) Estimation in continuous-time stochastic volatility models using nonlinear filters,

*Int. J. Theor. Appl. Fin.*
**3**, 279–308.

Google ScholarNolsoe K., Nielsen J. N., and Madsen H. (2000) Prediction-based estimating function for diffusion processes with measurement noise. Technical Reports 2000, No. 10, Informatics and Mathematical Modelling, Technical University of Denmark.

Ozaki, T. (1992) A bridge between nonlinear time series models and nonlinear stochastic dynamical systems: a local linearization approach,

*Statist. Sinica*
**2**, 113–135.

Google ScholarOzaki, T. (1994) The local linearization filter with application to nonlinear system identification. In H. Bozdogan (ed) *Proceedings of the first US/Japan Conference on the Frontiers of Statistical Modeling: An Informational Approach*, Kluwer Academic Publishers, pp. 217–240.

Ozaki, T. and Iino, M. (2001) An innovation approach to non-Gaussian time series analysis,

*J. Appl. Prob*.

**38A**, 78–92.

CrossRefGoogle ScholarOzaki, T. and Jimenez, J. C. (2002) An innovation approach for the estimation, selection and prediction of discretely observed continuous-time stochastic volatility models. Research Memo. No. 855, The Institute of Statistical Mathematics, Tokyo.

Ozaki, T., Jimenez, J. C., and Haggan-Ozaki, V. (2000) Role of the likelihood function in the estimation of chaos models,

*J. Time Ser. Anal*.

**21**, 363–387.

CrossRefGoogle ScholarOzaki, T., Jimenez, J. C., lino, M., Shi, Z., and Sugawara, S. (2001) Use of Stochastic Differential Equation Models in Financial Time Series Analysis: Monitoring and Control of Currencies in Exchange Market. In Proc. of the 3er Japan-US Joint Seminar on Statistical Time Series Analysis, June 18–June 22, Kyoto Japan, pp. 17–24.

Pedersen, A. R. (1995a) A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations,

*Scand. J. Statist*.

**22**, 55–71.

Google ScholarPedersen, A. R. (1995b) Consistency and asymptotic normality of an approximate maximum likelihood estimator for discretely observed diffusion processes,

*Bernoulli*
**1**, 257–279.

CrossRefGoogle ScholarPeng, H., Ozaki, T., and Jimenez, J. C. (2002) Modeling and control for foreign exchange based on a continuous time stochastic microstructure model, *in Proceedings of the 41st IEEE Conference on Decision and Control*, Las Vegas, Nevada USA, December 2002, pp. 4440–4445.

Poulsen, R. (1999) Approximate maximum likelihood estimation of discretely observed diffusion processes. Working Paper 29, Center for Analytical Finance, Aarthus.

Prakasa-Rao, B. L. S. (1983) Asymptotic theory for nonlinear least squares estimator for diffusion processes,

*Mathematische Operationsforschang Statistik Serie Statistik*
**14**, 195–209.

Google ScholarPrakasa-Rao, B. L. S. (1999)

*Statistical Inference for Diffusion Type Processes*. University Press, Oxford.

Google ScholarRoberts, G. O. and Stramer, O. (2001) On inference for partially observed nonlinear diffusion models using the Metropolis-Hasting algorithm,

*Biometrika*
**88**, 603–621.

CrossRefGoogle ScholarSchweppe, F. (1965) Evaluation of likelihood function for Gaussian signals,

*IEEE Trans. Inf. Theory*
**11**, 61–70.

CrossRefGoogle ScholarScott, L. O. (1987) Option pricing when the variance changes randomly: theory, estimation and an application,

*J. Fin. Quant. Anal*.

**22**, 419–438.

CrossRefGoogle ScholarShiryaev, A. N. (1999) *Essential of Stochastic Finance: Facts, Models, Theory*, World Scientific.

Shoji, I. (1998) A comparative study of maximum likelihood estimators for nonlinear dynamical systems,

*Int. J. Control*
**71**, 391–404.

CrossRefGoogle ScholarShoji, I. (2000) A nonparametric method of estimating nonlinear dynamical system models,

*Phys. Lett. A*
**277**, 159–168.

CrossRefGoogle ScholarShoji, I. (2002) Nonparametric state estimation of diffusion processes,

*Biometrika*
**89**, 451–456.

CrossRefGoogle ScholarShoji, I. and Ozaki, T. (1996) A statistical comparison of the short-term interest rate models for Japan, U.S., and Germany,

*Fin. Eng. Jap. Markets*
**3**, 263–275.

CrossRefGoogle ScholarShoji, I. and Ozaki, T. (1997) Comparative study of estimation methods for continuous time stochastic processes,

*J. Time Ser. Anal*.

**18**, 485–506.

CrossRefGoogle ScholarShoji, I. and Ozaki, T. (1998) A statistical method of estimation and simulation for systems of stochastic differential equations,

*Biometrika*
**85**, 240–243.

CrossRefGoogle ScholarSinger, H. (1993) Continuous-time dynamical systems with sampled data, error of measurement and unobserved components,

*J. Time Ser. Anal*.

**14**, 527–545.

CrossRefGoogle ScholarSinger, H. (2002) Parameter estimation of nonlinear stochastic differential equations: Simulated maximum likelihood versus extended Kalman filter and Ito-Taylor expansion,

*J. Comput. Graph. Statist*.

**11**, 972–995.

CrossRefGoogle ScholarSolo, V. (1980) Some aspects of recursive parameter estimation,

*Int. J. Control*
**32**, 395–410.

CrossRefGoogle ScholarSorensen, H. (2001) Discrete observed diffusions: approximations of the continuous-time score function,

*Scand. J. Statist*.

**28**, 113–121.

CrossRefGoogle ScholarSorensen, H. (2003) Simulated likelihood approximations for stochastic volatility models,

*Scand. J. Statist*.

**30**, 257–276.

CrossRefGoogle ScholarSorensen, H. (2004) Parametric inference for diffusion processes observed at discrete points in time: a survey,

*Int. Statist. Rev.*
**72**, 337–354.

CrossRefGoogle ScholarSorensen, M. (2000) Prediction-based estimating functions,

*Econometrics J*.

**3**, 123–147.

CrossRefGoogle ScholarStanton, R. (1997) A nonparametric model of term structure dynamics and the market price of interest rate risk,

*J. Finance*
**52**, 1973–2002.

CrossRefGoogle ScholarStein, E. M. and Stein, J. C. (1991) Stock price distributions with stochastic volatility: an analytic approach,

*Rev. Fin. Stud.*
**4**, 727–752.

CrossRefGoogle ScholarSundaresan, S. M. (2000) Continuous-time methods in finance: A review and an assessment,

*J. Finance*
**55**, 1569–1622.

CrossRefGoogle ScholarTauchen, G. E. (1986) Statistical properties of generalized method-of-moments estimators of structural parameters obtained from financial market data,

*J. Bus. Econ. Statit*.

**4**, 397–416.

CrossRefGoogle ScholarVan der Vaart, A. W. (1998) *Asymptotic Statistics*, Cambridge University Press.

Wiggins, J. B. (1987) Option values under stochastic volatility: theory and empirical estimates,

*J. Fin. Econ*.

**19**, 351–372.

CrossRefGoogle ScholarYoshida, N. (1992) Estimation for diffusion processes from discrete observation,

*J. Multivariate Anal*.

**41**, 220–242.

CrossRefGoogle Scholar