Skip to main content
Log in

Absolutely convergent fourier series. An improvement of the Beurling-Helson theorem

  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

We consider the space \(A(\mathbb{T})\) of all continuous functions f on the circle \(\mathbb{T}\) such that the sequence of Fourier coefficients \(\hat f = \left\{ {\hat f\left( k \right), k \in \mathbb{Z}} \right\}\) belongs to l 1(ℤ). The norm on \(A(\mathbb{T})\) is defined by \(\left\| f \right\|_{A(\mathbb{T})} = \left\| {\hat f} \right\|_{l^1 (\mathbb{Z})}\). According to the well-known Beurling-Helson theorem, if \(\phi :\mathbb{T} \to \mathbb{T}\) is a continuous mapping such that \(\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = O(1)\), n ∈ ℤ then φ is linear. It was conjectured by Kahane that the same conclusion about φ is true under the assumption that \(\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\log \left| n \right|} \right)\). We show that if \(\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\left( {{{\log \log \left| n \right|} \mathord{\left/ {\vphantom {{\log \log \left| n \right|} {\log \log \log \left| n \right|}}} \right. \kern-\nulldelimiterspace} {\log \log \log \left| n \right|}}} \right)^{1/12} } \right)\), then φ is linear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Beurling and H. Helson, “Fourier-Stieltjes transforms with bounded powers,” Math. Scand., 1 (1953), 120–126.

    MathSciNet  MATH  Google Scholar 

  2. J.-P. Kahane, Série de Fourier absolument convergentes, Springer-Verlag, Berlin-Heidelberg-New York, 1970.

    Google Scholar 

  3. J.-P. Kahane, “Quatre leçons sur les homéomorphismes du cercle et les séries de Fourier,” in: Topics in Modern Harmonic Analysis, Vol. II, Ist. Naz. Alta Mat. Francesco Severi, Roma, 1983, 955–990.

    Google Scholar 

  4. Z. L. Leibenson, “On the ring of functions with absolutely convergent Fourier series,” Uspekhi Mat. Nauk, 9:3(61) (1954), 157–162.

    Google Scholar 

  5. J.-P. Kahane, “Sur certaines classes de séries de Fourier absolument convergentes,” J. Math. Pures Appl., 35:3 (1956), 249–259.

    MathSciNet  MATH  Google Scholar 

  6. V. V. Lebedev, “Diffeomorphisms of the circle and the Beurling-Helson theorem,” Funkts. Anal. Prilozhen., 36:1 (2002), 30–35; English transl.: Funct. Anal. Appl., 36:1 (2002), 25–29.

    Article  Google Scholar 

  7. V. V. Lebedev, “Quantitative estimates in Beurling-Helson type theorems,” Mat. Sb., 201:12 (2010), 103–130; English transl.: Sb. Math., 201:12 (2010), 1811–1836.

    Google Scholar 

  8. V. V. Lebedev, “Estimates in Beurling-Helson type theorems: Multidimensional case,” Mat. Zametki, 90:3 (2011), 394–407; English transl.: Math. Notes, 90:3 (2011), 373–384.

    MathSciNet  Google Scholar 

  9. J.-P. Kahane, “Transformées de Fourier des fonctions sommables,” in: Proc. Internat. Congr. Math. (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, 114–131.

    Google Scholar 

  10. B. Green and S. Konyagin, “On the Littlewood problem modulo a prime,” Canad. J. Math., 61:1 (2009), 141–164.

    Article  MathSciNet  MATH  Google Scholar 

  11. E. M. Stein and R. Shakarchi, Fourier Analysis: An Introduction, Princeton Lectures in Analysis, v. I, Princeton Univ. Press, Princeton, NJ, 2003.

    MATH  Google Scholar 

  12. W. M. Schmidt, Diophantine Approximation, Lecture Notes in Math., vol. 785, Springer-Verlag, Berlin-Heidelberg-New York, 1980.

    MATH  Google Scholar 

  13. R. Larsen, An Introduction to the Theory of Multipliers, Springer-Verlag, Berlin-Heidelberg-New York, 1971.

    MATH  Google Scholar 

  14. M. M. Postnikov, Leçons de géométrie, Semester IV. Géométrie différentielle, Mir, Moscow, 2001.

    Google Scholar 

  15. T. Sanders, “The Littlewood-Gowers problem,” J. Anal. Math., 101:1 (2007), 123–162.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Lebedev.

Additional information

__________

Translated from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 46, No. 2, pp. 52–65, 2012

Original Russian Text Copyright © by V. V. Lebedev

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedev, V.V. Absolutely convergent fourier series. An improvement of the Beurling-Helson theorem. Funct Anal Its Appl 46, 121–132 (2012). https://doi.org/10.1007/s10688-012-0018-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10688-012-0018-0

Key words

Navigation