On Degrees of Growth of Finitely Generated Groups

  • A. G. Erschler

DOI: 10.1007/s10688-005-0055-z

Cite this article as:
Erschler, A.G. Funct Anal Its Appl (2005) 39: 317. doi:10.1007/s10688-005-0055-z


We prove that for an arbitrary function ρ of subexponential growth there exists a group G of intermediate growth whose growth function satisfies the inequality vG,S(n) ⩾ ρ(n) for all n. For every prime p, one can take G to be a p-group; one can also take a torsion-free group G. We also discuss some generalizations of this assertion.

Key words

growth of groups intermediate growth Grigorchuk group 

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • A. G. Erschler
    • 1
  1. 1.CNRS, Universite Lille 1, UFR de MathematiquesFrance

Personalised recommendations