Skip to main content
Log in

Status of the eLISA on table (LOT) electro-optical simulator for space based, long arms interferometers

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

We report on the progress in the realization of an electronic / optical simulator for space based, long arm interferometry and its application to the eLISA mission. The goal of this work is to generate realistic optics and electronics signals, especially simulating realistic propagation delays. The first measurements to characterize the simulator are also presented. With the present configuration, noise reduction factors of 5×107 for optical beat notes and 109 for RF beat notes have been achieved using the Time Delay Interferometry algorithm. The principle of the experiment has been validated and further work is ongoing to identify the residual noise sources and optimize the apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bykov, I., Delgado, J.J.E., Marin, A.F.G., Heinzel, G., Danzmann, K.: Lisa phasemeter development: Advanced prototyping. J. Phys. Conf. Ser. 154(1), 012,017 (2009) http://stacks.iop.org/1742-6596/154/i=1/a=012017

    Article  Google Scholar 

  2. Danzman, K., et al.: eLISA L2 White paper : The Gravitational Universe. https://www.elisascience.org/articles/elisa-mission/elisa-l2-white-paper (2013). [Online; accessed 28-August-2013]

  3. Danzman, K., et al.: Elisa science web site. https://www.elisascience.org (2013). [Online; accessed 28-August-2013]

  4. Danzmann, K.: {LISA} mission overview. Adv. Space Res. 25(6), 1129–1136 (2000). doi:10.1016/S0273-1177(99)00973-4. Fundamental Physics in Space http://www.sciencedirect.com/science/article/pii/S0273117799009734

  5. Dhurandhar, S., Ni, W.T., Wang, G.: Numerical simulation of time delay interferometry for a lisa-like mission with the simplification of having only one interferometer. Adv. Space Res. 51(1), 198–206 (2013). doi:10.1016/j.asr.2012.09.017 http://www.sciencedirect.com/science/article/pii/S0273117712005893

    Article  ADS  Google Scholar 

  6. Dhurandhar, S.V.: Time-delay interferometry and the relativistic treatment of lisa optical links. J. Phys. Conf. Ser. 154(1), 012,047 (2009) http://stacks.iop.org/1742-6596/154/i=1/a=012047

    Article  Google Scholar 

  7. Esteban, J.J., García, A.F., Barke, S., Peinado, A.M., Cervantes, F.G., Bykov, I., Heinzel, G., Danzmann, K.: Experimental demonstration of weak-light laser ranging and data communication for lisa. Opt. Express 19(17), 15,937–15,946 (2011). doi:10.1364/OE.19.015937. http://www.opticsexpress.org/abstract.cfm?URI=oe-19-17-15937

    Article  Google Scholar 

  8. Esteban, J.J.J., Bykov, I., Marín, A., Heinzel, G., Danzmann, K.: Optical ranging and data transfer development for lisa. J. Phys. Conf. Ser. 154(1), 012,025 (2009) http://stacks.iop.org/1742-6596/154/i=1/a=012025

    Article  Google Scholar 

  9. Fleddermann, R., Steier, F., Tröbs, M., Bogenstahl, J., Killow, C., Heinzel, G., Danzmann, K.: Measurement of the non-reciprocal phase noise of a polarization maintaining single-mode optical fiber. J. Phys. Conf. Ser. 154(1), 012,022 (2009) http://stacks.iop.org/1742-6596/154/i=1/a=012022

    Article  Google Scholar 

  10. Heinzel, G., Esteban, J.J.J., Barke, S., Otto, M., Wang, Y., Garcia, A.F., Danzmann, K.: Auxiliary functions of the lisa laser link: ranging, clock noise transfer and data communication. Class. Quantum Gravity 28, 4008 (2011) http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011CQGra..28i4008H&link_type=ABSTRACT

    Article  Google Scholar 

  11. Jennrich, O., et al.: LISA assessment study report (Yellow Book). http://sci.esa.int/lisa/48364-lisa-assessment-study-report-yellow-book/ (2011). [Online; accessed 28-August-2013]

  12. Jennrich, O., et al.: NGO assessment study report (Yellow Book). http://sci.esa.int/ngo/49839-ngo-assessment-study-report-yellow-book/ (2012). [Online; accessed 28-August-2013]

  13. José Esteban, J., García, A.F., Eichholz, J., Peinado, A.M., Bykov, I., Heinzel, G., Danzmann, K.: Ranging and phase measurement for LISA. J. Phys. Conf. Ser. 228(1), 012045 (2010). doi:10.1088/1742-6596/228/1/012045

    Article  ADS  Google Scholar 

  14. McKenzie, K., Spero, R.E., Shaddock, D.A.: Performance of arm locking in lisa. Phys. Rev. D 80, 102,003 (2009). doi:10.1103/PhysRevD.80.102003

    Article  Google Scholar 

  15. Mitryk, S., Wand, V., Mueller, G.: Verification of time-delay interferometry techniques using the university of florida lisa interferometry simulator. Class. Quantum Gravity 27, 084,012 (2010) http://www.google.com/search?client=safari&rls=en-us&q=Verification+of+time-delay+interferometry+techniques+using+the+University+of+Florida+LISA+interferometry+simulator&ie=UTF-8&oe=UTF-8

    Article  Google Scholar 

  16. Mitryk, S.J., Mueller, G., Sanjuan, J.: Hardware-based demonstration of time-delay interferometry and tdi-ranging with spacecraft motion effects. Phys. Rev. D 86, 122,006 (2012). doi:10.1103/PhysRevD.86.122006

    Article  Google Scholar 

  17. Otto, M., Heinzel, G., Danzmann, K.: Tdi and clock noise removal for the split interferometry configuration of lisa. Classical and Quantum Gravity 29(20), 205,003 (2012) http://stacks.iop.org/0264-9381/29/i=20/a=205003

    Article  MathSciNet  Google Scholar 

  18. Petiteau, A.: De la simulation de lisa a l’analyse des donnees. Ph.D. thesis, Université Paris Diderot - Paris 7 (2008)

  19. Petiteau, A., Auger, G., Halloin, H., Jeannin, O., Plagnol, E., Pireaux, S., Regimbau, T., Vinet, J.Y.: Lisacode: A scientific simulator of lisa. Phys. Rev. D 77, 23,002 (2008). doi:10.1103/PhysRevD.77.023002. http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008PhRvD..77b3002P&link_type=ABSTRACT

    Article  Google Scholar 

  20. Shaddock, D.A., Tinto, M., Estabrook, F.B., Armstrong, J.W.: Data combinations accounting for lisa spacecraft motion. Phys. Rev. D 68, 061,303 (2003). doi:10.1103/PhysRevD.68.061303

    Article  Google Scholar 

  21. Shaddock, D.A., Ware, B., Spero, R.E., Vallisneri, M.: Postprocessed time-delay interferometry for lisa. Phys. Rev. D 70, 081,101 (2004). doi:10.1103/PhysRevD.70.081101

    Article  Google Scholar 

  22. Sheard, B.S., Gray, M.B., McClelland, D.E., Shaddock, D.A.: Laser frequency stabilization by locking to a {LISA} arm. Phys. Lett. A 320(1), 9–21 (2003). doi:10.1016/j.physleta.2003.10.076. http://www.sciencedirect. com/science/article/pii/S0375960103016578

    Article  ADS  Google Scholar 

  23. Sutton, A., McKenzie, K., Ware, B., Shaddock, D.A.: Laser ranging and communications for lisa. Opt. Express 18(20), 20,759–20,773 (2010). doi:10.1364/OE.18.020759. http://www.opticsexpress.org/abstract.cfm?URI=oe-18-20-20759

    Article  Google Scholar 

  24. Sutton, A., Shaddock, D.A.: Laser frequency stabilization by dual arm locking for lisa. Phys. Rev. D 78(082), 001 (2008). doi:10.1103/PhysRevD.78.082001

    Google Scholar 

  25. Sutton, A.J., McKenzie, K., Ware, B, de Vine, G., Spero, R.E., Klipstein, W., Shaddock, D.A.: Improved optical ranging for space based gravitational wave detection. Class. Quantum Gravity 30(7), 075,008 (2013) http://stacks.iop.org/0264-9381/30/i=7/a=075008

    Article  Google Scholar 

  26. Sweeney, D., Mueller, G.: Experimental verification of clock noise transfer and components for space based gravitational wave detectors. Opt. Express 20(23), 25,603–25,612 (2012). doi:10.1364/OE.20.025603. http://www.opticsexpress.org/abstract.cfm?URI=oe-20-23-25603

    Article  Google Scholar 

  27. Sylvestre, J.: Simulations of laser locking to a lisa arm. Phys. Rev. D 70, 102,002 (2004). doi:10.1103/PhysRevD.70.102002

    Article  Google Scholar 

  28. Thorpe, J., Maghami, P., Livas, J.: Time domain simulations of arm locking in lisa. Phys. Rev. D 83(12), 122,002 (2011). doi:10.1103/PhysRevD.83.122002. http://prd.aps.org/abstract/PRD/v83/i12/e122002

    Article  Google Scholar 

  29. Thorpe, J.I.: Lisa long-arm interferometry. Class. Quantum Gravity 27(8), 084,008 (2010) http://stacks.iop.org/0264-9381/27/i=8/a=084008

    Article  MathSciNet  Google Scholar 

  30. Tinto, M., Dhurandhar, S.V.: Time-delay interferometry. Living Rev. Relativ. 8(4) (2005). doi:10.12942/lrr-2005-4. http://www.livingreviews.org/ lrr-2005-4

  31. Tinto, M., Shaddock, D.A., Sylvestre, J., Armstrong, J.W.: Implementation of time-delay interferometry for lisa. Phys. Rev. D 67, 122,003 (2003). doi:10.1103/PhysRevD.67.122003

    Article  Google Scholar 

  32. Tröbs, M., Heinzel, G.: Improved spectrum estimation from digitized time series on a logarithmic frequency axis. Measurement 39(2), 120–129 (2006). doi:10.1016/j.measurement.2005.10.010

    Article  Google Scholar 

  33. Tröbs, M., Heinzel, G.: Corrigendum to ‘improved spectrum estimation from digitized time series on a logarithmic frequency axis’ [measurement 39 (2006) 120 - 129]. Measurement 42(1), 170 (2009). doi:10.1016/j.measurement.2008.04.004. http://www.sciencedirect.com/science/article/pii/S0263224108000705

    Article  Google Scholar 

  34. Vallisneri, M.: Geometric time delay interferometry. Phys. Rev. D 72(4), 042,003 (2005) http://scholar.google.com.rproxy.sc.univ-paris-diderot.fr/scholar?hl=en&lr=&q=info:dAzoZjt071MJ:scholar.google.com/&output=search

    Article  Google Scholar 

  35. Vallisneri, M. Phys. Rev. D 76(10), 109,903 (2007) http://scholar.google.com.rproxy.sc.univ-paris-diderot.fr/scholar?hl=en&lr=&q=info:JkBcMQqodxQJ:scholar.google.com/&output=search

    Article  Google Scholar 

  36. de Vine, G., Ware, B., McKenzie, K., Spero, R.E., Klipstein, W.M., Shaddock, D.A.: Experimental demonstration of time-delay interferometry for the laser interferometer space antenna. Phys. Rev. Lett. 104, 211,103 (2010). doi:10.1103/PhysRevLett.104.211103

    Article  Google Scholar 

  37. Wand, V., Yu, Y., Mitryk, S., Sweeney, D., Preston, A., Tanner, D., Mueller, G., Thorpe, J.I., Livas, J.: Implementation of armlocking with a delay of 1 second in the presence of doppler shifts. Journal of Physics: Conference Series 154(1), 012,024 (2009) http://stacks.iop.org/1742-6596/154/i=1/a=012024

    Google Scholar 

Download references

Acknowledgments

This work has been funded by the French Space Agency (CNES), under grants R-S07/SU-0001-012 and R-S08/SU-0001-012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Grüning.

Appendices

Appendix A: development of time delay interferometry equations

The combination of the recorded signals results in the following equations:

$$\begin{array}{@{}rcl@{}} s_{TT;1} &=& s_{OS;1} + \frac{s_{TO;1}+s_{Ref;1}}{2} + D_{2^{\prime}1} \frac{s_{TS;2^{\prime}}}{2} \\ &=& D_{2^{\prime}1} \eta_{L;2^{\prime}} - \eta_{L;1} + g_{w;2^{\prime}1} + \delta_{TM;1} + D_{2^{\prime}1} \delta_{TM;2^{\prime}} \\&&+ o_{TS;1} + D_{2^{\prime}1} o_{S;2^{\prime}1} \end{array} $$
(8a)
$$\begin{array}{@{}rcl@{}} s_{TT;1^{\prime}} &=& s_{OS;1^{\prime}} + \frac{s_{TO;1^{\prime}}+s_{Ref;1^{\prime}}}{2} + D_{31^{\prime}} \frac{s_{TS;3}}{2} \\ &=& D_{31^{\prime}} \eta_{L;3} - \eta_{L;1^{\prime}} + g_{w;31^{\prime}} + \delta_{TM;1^{\prime}} +D_{31^{\prime}} \delta_{TM;3} \\&&+ o_{TS;1^{\prime}} + D_{31^{\prime}} o_{S;31^{\prime}} \end{array} $$
(8b)
$$\begin{array}{@{}rcl@{}} s_{TT;2^{\prime}} &=& s_{OS;2^{\prime}} + \frac{s_{TO;2^{\prime}}}{2} + D_{12^{\prime}} \frac{s_{TS;1}}{2} \\ &=&D_{12^{\prime}} \eta_{L;1} - \eta_{L;2^{\prime}} + g_{w;12^{\prime}} + \delta_{TM;2^{\prime}} + D_{12^{\prime}} \delta_{TM;1} \\&&+ o_{TS;2^{\prime}} + D_{12^{\prime}} o_{S;12^{\prime}} \end{array} $$
(8c)
$$\begin{array}{@{}rcl@{}} s_{TT;3} &=& s_{OS;3} + \frac{s_{TO;3}}{2} + D_{1^{\prime}3} \frac{s_{TS;1^{\prime}}}{2} \\ &=& D_{1^{\prime}3} \eta_{L;1^{\prime}} - \eta_{L;3} + g_{w;1^{\prime}3} + \delta_{TM;3} + D_{1^{\prime}3} \delta_{TM;1^{\prime}} \\&&+ o_{TS;3} + D_{1^{\prime}3} o_{S;1^{\prime}3} \end{array} $$
(8d)

Also, the back-link fiber being reciprocal [9], which means that the added noise from 1 to 1’ is identical to the noise added when propagating from 1’ to 1: \(\eta _{B;1} = \eta _{B;1^{\prime }}\),the differential noise between laser 1 and 1’ can be deduced from s R e f;1 and \(s_{Ref;1^{\prime }}\):

$$ \frac{s_{Ref;1} - s_{Ref;1^{\prime}}}{2} = \eta_{L;1} - \eta_{L;1^{\prime}} + \frac{o_{Ref;1}-o_{Ref;1^{\prime}}}{2} $$
(9)

Practically, the laser frequencies will not be let freely running but will be phase locked on a master, frequency stabilized source (e.g. Laser 1). From the previous equations, assuming perfect correction, this phase locking means that:

$$\begin{array}{@{}rcl@{}} s_{Ref;1} &=& 0 \Rightarrow \eta_{L;1^{\prime}} = \eta_{L_{1}} - \eta_{B;1} + o_{Ref;1} \end{array} $$
(10a)
$$\begin{array}{@{}rcl@{}} s_{OS;2^{\prime}} &=& 0 \Rightarrow \eta_{L;2^{\prime}} = D_{12^{\prime}} \eta_{L;1} + g_{w;12^{\prime}} - D_{12^{\prime}} \delta_{OB;1} - \delta_{OB;2^{\prime}} \\&&+ D_{12^{\prime}} o_{S;12^{\prime}} + o_{OS;2^{\prime}} \end{array} $$
(10b)
$$\begin{array}{@{}rcl@{}} s_{OS;3} &=& 0 \Rightarrow \eta_{L;3} = D_{1^{\prime}3} \eta_{L;1^{\prime}} + g_{w;1^{\prime}3} - D_{1^{\prime}3} \delta_{OB;1^{\prime}} - \delta_{OB;3} \\&&+ D_{1^{\prime}3} o_{S;1^{\prime}3} + o_{OS;3} \end{array} $$
(10c)

Assuming that δ O B;q =0 and η B;q =0 (these noises can be subtracted using s T O;q and s R e f;q signals) and neglecting both test mass and other local noises (δ T M =o x x;q =0), this configuration is effectively equivalent to a transponder, where the phase noises of the incoming beams on S/C 2 and 3 are transferred on the beams sent back to S/C 1.

Appendix B: phasemeter reference measurement

The ASD of data recorded on channel 1 and the ASD of the difference between channel 1 and 2 are represented on Fig. 14.

Fig. 14
figure 14

Reference level of phasemeter noise

The ASD of raw values and differences between other channels give very similar results. These results show that the raw data are slightly above the eLISA requirements for the phase measurement noise, while the differential measurement between two channels is marginally compatible with the requirement. The difference between the two curves are due to a relatively strong common mode between the channels, whose origin is unclear for the moment, but could be due, e.g. to a residual phase jitter between the reference signal (at 72.001 MHz in this experiment) and the synthesized 2.001 MHz signal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grüning, P., Halloin, H., Prat, P. et al. Status of the eLISA on table (LOT) electro-optical simulator for space based, long arms interferometers. Exp Astron 39, 281–302 (2015). https://doi.org/10.1007/s10686-015-9448-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-015-9448-z

Keywords

Navigation