Skip to main content
Log in

Evolution of influence: signaling in a lycaenid-ant interaction

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Some phytophagous insects gain defense from natural enemies by associating with otherwise potentially harmful top predators. Many lycaenid butterfly caterpillars are involved in such interactions with ants: larvae provide carbohydrate rewards from the dorsal nectary organ (DNO) to associated ants in return for protection from natural enemies. The stability of these interactions involves signals that identify the lycaenid caterpillar as a mutualist. However, larvae of some lycaenid species, such as Lycaena xanthoides, are found in close association with ants but do not possess the reward producing DNO. Evaluating the relationship in a phylogenetic framework, we show that the association between L. xanthoides and ants likely evolved from a non-ant-associated ancestor. Behavioral trials also show that L. xanthoides larvae are capable of influencing ant behavior to increase ant tending when faced with a simulated predator attack, without providing DNO-derived rewards to ant associates. These results demonstrate that the DNO is not necessary to maintain associations between lycaenid larvae and ants. Third-party interactions may affect the evolution of mutualisms and consideration of underlying evolutionary history is necessary to understand contemporary species associations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal AA, Fordyce JA (2000) Induced indirect defense in a lycaenid-ant association: the regulation of a resource in a mutualism. Proc R Soc Lond B 267:1857–1861

    Article  Google Scholar 

  • Akino T, Knapp JJ, Thomas JA, Elmes GW (1999) Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc R Soc Lond B 266:1419–1426

    Article  CAS  Google Scholar 

  • Allen TJ, Brock JP, Glassberg J (2005) Caterpillars in the field and garden: a field guide to the butterfly caterpillars of North America. Oxford University Press, Oxford

    Google Scholar 

  • Atsatt PR (1981) Lycaenid butterflies and ants: selection for enemy-free space. Am Nat 118:638–654

    Article  Google Scholar 

  • Ballmer GR, Pratt GF (1988) A survey of the last instar larvae of the Lycaenidae (Lepidoptera) of California. J Res Lepid 27:1–81

    Article  Google Scholar 

  • Ballmer GR, Pratt GF (1991) Quantification of ant attendance (myrmecophily) of lycaenid larvae. J Res Lepid 30:95–112

    Google Scholar 

  • Bozano GC, Weidenhoffer Z (2001) Lycaenidae part I: subfamily Lycaeninae. In: Bozano GC (ed) Guide to the butterflies of the Palearctic region. Omnes Artes, Milan, pp 1–62

    Google Scholar 

  • Bronstein JL (2001) The exploitation of mutualisms. Ecol Lett 4:277–287

    Article  Google Scholar 

  • Caterino MS, Sperling FAH (1999) Papilio phylogeny based on mitochondrial cytochrome oxidase I and II genes. Mol Phylogenet Evol 11:122–137

    Article  PubMed  CAS  Google Scholar 

  • Cushman JH, Rashbrook VK, Beattie AJ (1994) Assessing benefits to both participants in a lycaenid-ant association. Ecology 75:1031–1041

    Article  Google Scholar 

  • Daniels, H. 2004. Facultative butterfly-ant interactions—the role of variation in composition of nectar secretions. Ph.D. dissertation, University of Bayreuth, Bayreuth

  • Dettner K, Liepert C (1994) Chemical mimicry and camouflage. Annu Rev Entomol 39:129–154

    Article  CAS  Google Scholar 

  • DeVries PJ (1984) Of crazy-ants and Curetinae: are Curetis butterflies tended by ants? Zool J Linnean Soc 80:59–66

    Article  Google Scholar 

  • Eliot JN (1973) The higher classification of the Lycaenidae (Lepidoptera): a tentative arrangement. Bull Brit Mus (Nat Hist), Entomol 28:1–505

    Google Scholar 

  • Fiedler K, Maschwitz U (1989) Functional analysis of the myrmecophilous relationships between ants (Hymenoptera: Formicidae) and Lycaenids (Lepidoptera: Lycaenidae). Ethology 80:71–80

    Article  Google Scholar 

  • Fiedler K, Saam C (1995) Ants benefit from attending facultatively myrmecophilous Lycaenidae caterpillars: evidence from a survival study. Oecologia 104:316–322

    Article  Google Scholar 

  • Fiedler K, Seufert P, Pierce NE, Pearson JG, Baumgarten H-T (1992) Exploitation of lycaenid-ant mutualisms by braconid parasitoids. J Res Lepid 31:153–168

    Google Scholar 

  • Fiedler K, Hölldobler B, Seufert P (1996) Butterflies and ants: the communicative domain. Experientia 52:14–24

    Article  CAS  Google Scholar 

  • Francoeur A (1973) Revision taxonomique des especes nearctiques du group fusca, genre Formica (Hymenoptera: Formicidae). Mem Soc Entomol Québec 3:1–316

    Google Scholar 

  • Fraser AM, Axén AH, Pierce NE (2001) Assessing the quality of different ant species as partners of a myrmecophilous butterfly. Oecologia 129:452–460

    Google Scholar 

  • Green P (1999) Phrap. http://phrap.org

  • Green P, Ewing B (2002) Phred. http://phrap.org

  • Gross P (1993) Insect behavioral and morphological defenses against parasitoids. Ann Rev Entomol 38:251–273

    Article  Google Scholar 

  • Henning FF (1983) Chemical communication between lycaenid larvae (Lepidoptera: Lycaenidae) and ants (Hymenoptera: Formicidae). J Entomol Soc S Afr 46:341–366

    Google Scholar 

  • Hinton HE (1951) Myrmecophilous Lycaenidae and other Lepidoptera—a summary. Proc Trans S London Entomol Nat Hist Soc 1949–50:111–175

    Google Scholar 

  • Hodges RW, Dominick T, Davis DR, Ferguson DC, Franclemont JG, Munroe EG, Powell JA (eds) (1983) Check list of the lepidoptera of America North of Mexico (Including Greenland). E. W. Classey Ltd. and The Wedge Entomological Research Foundation, London

    Google Scholar 

  • Kitching RL, Luke B (1985) The myrmecophilous organs of the larvae of some British Lycaenidae (Lepidoptera): a comparative study. J Nat Hist 19:259–276

    Article  Google Scholar 

  • Leimar O, Axén AH (1993) Strategic behaviour in an interspecific mutualism: interactions between lycaenid larvae and ants. Anim Behav 46:1177–1182

    Article  Google Scholar 

  • Maddison WP (1997) Gene trees in species trees. Syst Biol 46:523–536

    Article  Google Scholar 

  • Maddison WP, Knowles LL (2006) Inferring phylogeny despite incomplete lineage sorting. Syst Biol 55:21–30

    Article  PubMed  Google Scholar 

  • Maddison DR, Maddison WP (2007a) Chromaseq: a Mesquite module for analyzing sequence chromatograms. Version 0.91. http://mesquiteproject.org/packages/chromaseq

  • Maddison WP, Maddison DR (2007b) Mesquite: a modular system for evolutionary analysis. Version 2.0bi44. http://mesquiteproject.org

  • Maschwitz U, Wüst M, Schurian K (1975) Bläulingsraupen als Zuckerlieferanten für Ameisen. Oecologia 18:17–21

    Google Scholar 

  • Megens H-J, de Jong R, Fiedler K (2005) Phylogenetic patterns in larval host plant and ant association of Indo-Australian Arhopalini butterflies (Lycaenidae: Theclinae). Biol J Linn Soc 84:225–241

    Article  Google Scholar 

  • Monteiro A, Pierce NE (2001) Phylogeny of Bicyclus (Lepidoptera: Nymphalidae) inferred from COI, COII and EF-1alpha gene sequences. Mol Phylogenet Evol 18:264–281

    Article  PubMed  CAS  Google Scholar 

  • Nault LR, Montgomery ME, Bowers WS (1976) Ant-aphid association: role of aphid alarm pheromone. Science 192:1349–1351

    Article  PubMed  CAS  Google Scholar 

  • Newcomer EJ (1912) Some observations on the relation of ants and lycaenid caterpillars, and a description of the relational organs of the latter. J NY Entomol Soc 20:31–36

    Google Scholar 

  • Oliver JC (2008) AUGIST: Inferring species trees while accommodating gene tree uncertainty. Bioinformatics 24:2932–2933

    Article  PubMed  CAS  Google Scholar 

  • Oliver JC, Shapiro AM (2007) Genetic isolation and cryptic variation within the Lycaena xanthoides species group (Lepidoptera: Lycaenidae). Mol Ecol 16:4308–4320

    Article  PubMed  CAS  Google Scholar 

  • Oliver JC, Prudic KL, Pauly GB (2007) Parasitism rates in larval Lycaena xanthoides (Godart) (Lepidoptera: Lycaenidae) and a new host record for Cotesia theclae (Riley) (Hymenoptera: Braconidae). Pan-Pac Entomol 83:262–264

    Article  Google Scholar 

  • Osborn F, Jaffé K (1997) Cooperation vs. exploitation: interactions between Lycaenid (Lepidoptera: Lycaenidae) larvae and ants. J Res Lepid 34:69–82

    Google Scholar 

  • Pasteels JM, Grégoire J-C, Rowell-Rahier M (1983) The chemical ecology of defense in arthropods. Ann Rev Entomol 28:263–289

    Article  CAS  Google Scholar 

  • Pierce NE (1983) Ecology and evolution of symbioses between lycaenid butterflies and ants. Ph.D. thesis, Harvard University, Cambridge, Massachusetts

  • Pierce NE, Mead PS (1981) Parasitoids as selective agents in the symbiosis between lycaenid butterfly larvae and ants. Science 211:1185–1187

    Article  PubMed  CAS  Google Scholar 

  • Pierce NE, Braby MF, Heath A, Lohman DJ, Mathew J, Rand DB, Travassos MA (2002) The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Ann Rev Entomol 47:733–771

    Article  CAS  Google Scholar 

  • Pratt GF, Wright DM (2002) Allozyme phylogeny of North American coppers (Lycaeninae: Lycaenidae). Pan-Pac Entomol 78:219–229

    Google Scholar 

  • R Development Core Team (2007) R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria) ISBN 3-900051-07-0, URL http://www.R-project.org

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Ruxton GD, Sherratt TN, Speed MP (2004) Avoiding attack: the evolutionary ecology of crypsis, Warning Signals and Mimicry. Oxford University Press, Oxford

    Google Scholar 

  • Saarinen EV (2006) Differences in worker caste behaviour of Oecophylla smaragdina (Hymenoptera: Formicidae) in response to larvae of Anthene emolus (Lepidoptera: Lycaenidae). Biol J Linnean Soc 88:391–395

    Article  Google Scholar 

  • Scott JA (1986) The Butterflies of North America: a natural history and field guide. Stanford University Press, Stanford

    Google Scholar 

  • Stadler B, Dixon AFG (2005) Ecology and evolution of aphid-ant interactions. Ann Rev Ecol Evol Syst 36:345–372

    Article  Google Scholar 

  • Stadler B, Dixon AFG (2008) Mutualism: ants and their insect partners. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  PubMed  CAS  Google Scholar 

  • Stanton ML (2003) Interacting guilds: moving beyond the pairwise perspective on mutualisms. Am Nat 162:S10–S23

    Article  PubMed  Google Scholar 

  • Travassos MA, Pierce NE (2000) Acoustics, context and function of vibrational signalling in a lycaenid butterfly–ant mutualism. Anim Behav 60:13–26

    Article  PubMed  Google Scholar 

  • van Dorp K (2004) Molecular systematics of Lycaena F., 1807 (Lepidoptera: Lycaenidae)—Some preliminary results. Proc Neth Entomol Soc 15:65–70

    Google Scholar 

  • Vane-Wright RI (1976) A unified classification of mimetic resemblances. Biol J Linnean Soc 8:25–56

    Article  Google Scholar 

  • Wahlberg N, Braby MF, Brower AVZ, de Jong R, Lee M-M, Nylin S, Pierce NE, Sperling FAH, Vila R, Warren AD, Zakharov E (2005) Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proc R Soc B 272:1577–1586

    Article  PubMed  CAS  Google Scholar 

  • Weeks JA (2003) Parasitism and ant protection alter the survival of the lycaenid Hemiargus isola. Ecol Entomol 28:228–232

    Article  Google Scholar 

  • Wickler W (1968) Mimicry in plants and animals. McGraw-Hill Book Company, New York

    Google Scholar 

Download references

Acknowledgments

We thank K.L. Prudic, E.C. Snell-Rood, J.M. Davis, and especially D.R. Papaj for discussions concerning behavioral analyses and species interactions. D.R. Maddison and M.J. Sanderson provided insight on analyses of character evolution. We also thank G. Anweiler, G.C. Bozano, A.M. Shapiro, and E. Weingartner for providing specimens. G.F. Pratt and G.R. Ballmer provided invaluable information regarding field sites and larval rearing conditions. This work was funded by the Center for Insect Science and an NSF DDIG to J.C.O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey C. Oliver.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2084 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliver, J.C., Stein, L.R. Evolution of influence: signaling in a lycaenid-ant interaction. Evol Ecol 25, 1205–1216 (2011). https://doi.org/10.1007/s10682-011-9478-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-011-9478-6

Keywords

Navigation