, Volume 25, Issue 2, pp 417-428

Evolutionary consequences of habitat fragmentation: population size and density affect selection on inflorescence size in a perennial herb

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Habitat fragmentation is considered to be one of the major threats to biological diversity worldwide. To date, however, its consequences have mainly been studied in an ecological context, while little is known about its effects on evolutionary processes. In this study we examined whether habitat fragmentation affects selection on plant phenotypic traits via changes in plant-pollinator interactions, using the self-incompatible perennial herb Phyteuma spicatum. Specifically, we hypothesized that limited pollination service in small or low-density populations leads to increased selection for traits that attract pollinators. We recorded mean seed production per capsule and per plant as a measure of pollination intensity and assessed selection gradients (i.e., trait-fitness relationships) in 16 natural populations of varying size and density over 2 years. Mean seed production was not related to population size or density, except for a marginal significant effect of density on the mean number of seeds per capsule in 1 year. Linear selection for flowering time and synchrony was consistent across populations; relative fitness was higher in earlier flowering plants and in plants flowering synchronously with others. Selection on inflorescence size, however, varied among populations, and linear selection gradients for inflorescence size were negatively related to plant population size and density in 1 year. Selection for increased inflorescence size decreased with increasing population size and density. Contrary to our expectation this appeared not to be related to changes in pollination intensity (mean seed production was not related to population size or density in this year), but was rather likely linked to differences in some other component of the abiotic or biotic environment. In summary, our results show that habitat fragmentation may influence selection on plant phenotypic traits, thereby highlighting potential evolutionary consequences of human-induced environmental change.