Skip to main content

Advertisement

Log in

QTL mapping for nitrogen use efficiency and related physiological and agronomical traits during the vegetative phase in rice under hydroponics

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Breeding crops for better nitrogen use efficiency (NUE) is one of the primary objectives in modern agriculture to decrease nitrogen (N) fertiliser application. However, genetic information about the components of NUE is still limited. The present study aims to identify quantitative trait loci (QTLs) for agronomical NUE (agNUE) and its two components—absorption NUE (aNUE) and physiological NUE (pNUE)—and related traits. A population including 174 recombinant inbred lines derived from the cross IR64/Azucena was tested twice in hydroponics in the Yoshida solution at the vegetative phase with three different N concentrations: 1X (standard), 1/4X and 1/8X. The different components of NUE and several physiological and agronomical traits were determined after 4 weeks of N treatment. The results were submitted to composite interval mapping (CIM) and to joint QTL analysis for multiple traits. The CIM revealed 14 putative QTLs for NUE components and 63 QTLs for 12 physiological and agronomical traits. Six hotspots containing numerous QTLs were identified. All of them were confirmed through joint QTL analysis. Furthermore, four of them—(1) for aNUE and agNUE on chromosome 3; (2) for aNUE and agNUE on chromosome 8; (3) for both dry weight of stems + sheaths and dry weight of roots on chromosome 3; (4) for plant height on chromosome 1—were found repeatedly in several repetitions in our studies and have been identified also in previous studies. These finding may serve as a basis for further fine-mapping and candidate gene studies, therefore aiding the development of cultivars for sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrama HAS, Zakaria AG, Said FB, Tuinstra M (1999) Identification of quantitative trait loci for nitrogen use efficiency in maize. Mol Breed 5:187–195

    Article  Google Scholar 

  • Ahmadi N, Dubreuil-Tranchant C, Courtois B, Foncéka D, This D, McCouch SR, Lorieux M, Glaszmann JC, Ghesquière A (2005) New resources and integrated maps for IR64 x Azucena, a reference population in rice. In: IRRI 5th international rice genetics symposium and 3rd international rice functional genomics symposium, Manila, Philip, 19823 November 2005. sl:sn, 1p. International Rice Genetics Symposium. Manille, Philippines

  • Bourgis F, Guyot R, Gherbi H, Tailliez E, Amabile I, Salse J, Lorieux M, Delseny M, Ghesquière A (2008) Characterization of the major fragance gene from an aromatic japonica rice and analysis of its diversity in Asian cultivated rice. Theor Appl Genet 117:353–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH (2002) Emissions of N2O and NO from fertilized fields: summary of available measurement data. Glob Biogeochem Cycles 16:1–13

    Article  Google Scholar 

  • Carlborg O, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618–625

    Article  CAS  PubMed  Google Scholar 

  • Champoux MC, Wang G, Sakarung S, Mackill DJ, O’Toole JC, Huang S, McCouch SR (1995) Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet 90:969–981

    Article  CAS  PubMed  Google Scholar 

  • Cho YG, Eun MY, McCouch SR, Chea YA (1994) The semid-warf gene, sd-1, of rice (Oryza sativa L.). II. Molecular mapping and marker-assisted selection. Theor Appl Genet 89:54–59

    CAS  PubMed  Google Scholar 

  • Cho Y, Jiang WZ, Chin JH, Piao ZP, Cho YG, McCouch SR, Koh HJ (2007) Identified QTLs associated with physiological nitrogen use efficiency in rice. Mol Cells 23:72–79

    CAS  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conway GR, Pretty JN (1988) Fertilizer risks in developing countries. Nature 334:207–208

    Article  CAS  PubMed  Google Scholar 

  • Davies DB, Sylvester-Bradley R (1995) The contribution of fertilizer nitrogen to leachable nitrogen in the UK: a review. J Sci Food Agric 68:399–406

    Article  CAS  Google Scholar 

  • De Datta SK, Broadbent FE (1990) Nitrogen use efficiency of 24 rice genotypes in N-deficient soil. Field Crop Res 23:81–92

    Article  Google Scholar 

  • De Datta SK, Buresh RJ (1989) Integrated nitrogen management in irrigated rice. Adv Soil Sci 10:143–169

    Article  Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929

    Article  CAS  PubMed  Google Scholar 

  • Doerge RW, Zeng ZB, Weir BS (1997) Statistical issues in the search for genes affecting quantitative traits in experimental populations. Stat Sci 12:195–219

    Article  Google Scholar 

  • Dufey I, Hakizimana P, Drayer X, Lutts S, Bertin P (2009) QTL mapping for biomass and physiological traits linked to resistance mechanisms to ferrous iron toxicity in rice. Euphytica 167:143–160

    Article  CAS  Google Scholar 

  • Dufey I, Hiel MP, Hakizimana P, Draye X, Lutts S, Kone B, Drame KN, Konate KA, Sie M, Bertin P (2012) Multi-environment quantitative trait loci mapping and consistency across environments of resistance mechanisms to ferrous ion toxicity in rice. Crop Sci 52:539–550

    Article  CAS  Google Scholar 

  • Dufey I, Drayer X, Lutts S, Lorieux M, Martines C, Bertin P (2015) Novel QTLs in an interspecific backcross Oryza sativa × Oryza glaberrima for resistance to iron toxicity in rice. Euphytica 204:609–625

    Article  CAS  Google Scholar 

  • Fang P, Wu P (2001) QTL × N-level interaction for plant height in rice (Oryza Sativa L.). Plant Soil 236:237–242

    Article  CAS  Google Scholar 

  • Feng Y, Cao LY, Wu WM, Shen XH, Zhan XD, Zhai RR, Wang RC, Chen DB, Cheng SH (2010) Mapping QTLs for nitrogen- deficiency tolerance at seedling stage in rice (Oryza sativa L.). Plant Breed 129:652–656

    Article  CAS  Google Scholar 

  • Feng Y, Zhai R, Cao L, Lin Z, Wei X, Cheng S (2011) QTLs for plant height and heading date in rice under two nitrogen levels. Acta Agron Sinica 37:1525–1532

    CAS  Google Scholar 

  • Ferguson RB, Hergert GW, Schepers JS, Gotway CA, Cahoone JE, Peterson TA (2002) Site-specific nitrogen management of irrigated maize, yield and soil residual nitrate effects. Soil Sci Soc Am J 66:544–553

    Article  CAS  Google Scholar 

  • Fischer RA, Byerlee D, Edmeades GO (2009) Can technology deliver on the yield challenge to 2050? FAO expert meeting on how to feed the world in 2050, pp 24–26

  • Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9:597–605

    Article  CAS  PubMed  Google Scholar 

  • Guo LB, Zhu LH, Xu YB, Zeng DL, Wu P, Qian Q (2004) QTL analysis of seed dormancy in rice (Oryza sativa L.). Euphytica 140:155–162

    Article  CAS  Google Scholar 

  • Gutiérrez RA (2012) Systems biology for enhanced plant nitrogen nutrition. Science 336:1673–1675

    Article  CAS  PubMed  Google Scholar 

  • Hamaoka N, Uchida Y, Tomita M, Kumagai E, Araki T, Ueno O (2013) Genetic variations in dry matter production, nitrogen uptake, and nitrogen use efficiency in the AA genome Oryza species grown under different nitrogen conditions. Plant Prod Sci 16:107–116

    Article  CAS  Google Scholar 

  • Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush GS, Sasaki T (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479–494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto M, Herai Y, Nagaoka T, Kouno K (2007) Nitrate leaching in granitic regosol as affected by N uptake and transpiration by corn. Soil Sci Plant Nutr 53:300–309

    Article  CAS  Google Scholar 

  • Hirel B, Bertin P, Quillere I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M (2001) Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol 125:1258–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 9:2369–2387

    Article  CAS  Google Scholar 

  • Hirel B, Tétu T, Lea PJ, Dubois F (2011) Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3:1452–1485

    Article  CAS  Google Scholar 

  • Huang N, Courtois B, Khush GS, Lin H, Wang G, Wu P, Zheng K (1996) Association of quantitative trait loci for plant height with major dwarfing genes in rice. Heredity 77:130–137

    Article  CAS  Google Scholar 

  • Ishimaru K, Kobayashi N, Ono K, Yano M, Ohsugi R (2001) Are contents of rubisco, soluble protein and nitrogen in flag leaves of rice controlled by the same genetics? J Exp Bot 52:1827–1833

    Article  CAS  PubMed  Google Scholar 

  • Jasen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    Google Scholar 

  • Jiang C, Zeng ZB (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111–1127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antonio BA, Shomura A, Shimizu T, Lin S-Y, Inoue T, Fukuda A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Krihara T, Hayasaka K, Miyao A, Monna L, Zhong HS, Tamura Y, Wang Z-X, Momma T, Umehara Y, Yano M, Sasaki T, Monibe Y (1994) A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nat Genet 8:365–372

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  CAS  PubMed  Google Scholar 

  • Lian X, Xing Y, Yan H, Xu C, Li X, Zhang Q (2005) QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theor Appl Genet 112:85–96

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Gao Z, Shen X, Zhan X, Zhang Y, Wu W, Cao L, Cheng S (2011) Mapping and comparative analysis of QTL for rice plant height based on different sample sizes within a single line in a RIL population. Rice Sci 18:265–272

    Article  Google Scholar 

  • McCough SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD (1988) Molecular mapping of rice chromosomes. Theor Appl Genet 76:815–829

    Article  Google Scholar 

  • Meyer C, Stitt M (2001) Nitrate reduction and signalling. In: Lea PJ, Morot-Gaudry JF (eds) Plant nitrogen. Springer, Berlin, pp 61–78

    Google Scholar 

  • Misselbrook TH, Van der Weerden YJ, Pain BF, Jarvis SC, Chambers BJ, Smith KA, Phillips VR, Demmers TGM (2000) Ammonia emission factors for UK agriculture. Atmos Environ 34:871–880

    Article  CAS  Google Scholar 

  • Mosier A, Syers JK, Freney JR (2004) Agriculture and the nitrogen cycle. Assessing the impacts of fertilizer use on food production and the environment. SCOPE 65. Island Press, Washington, DC

  • Namai S, Toriyama K, Fukuta Y (2009) Genetic variation in dry matter production and physiological nitrogen use efficiency in rice (Oryza sativa L.) varieties. Breed Sci 59:269–276

    Article  CAS  Google Scholar 

  • Nguyen HTT, Pham CV, Bertin P (2014) The effect of nitrogen concentration on nitrogen use efficiency and related traits in cultivated rices (Oryza sativa L. subsp. indica and japonica and O. glaberrima Steud.) in hydroponics. Euphytica 198:137–151

    Google Scholar 

  • Obara M, Kajiura M, Fukuta Y, Yano M, Hayashi M, Yamaya T, Sato T (2001) Mapping of QTL associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.). J Exp Bot 52:1209–1217

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726

    Article  CAS  PubMed  Google Scholar 

  • Raun WR, Johnson GV (1999) Improving nitrogen use efficiency for cereal production. Agron J 91:357–363

    Article  Google Scholar 

  • Saito A, Yano W, Kishimoto N, Yoshimura A, Saito K, Kuhara S, Ukai Y, Kawase M, Nagamine T, Yoshimura A, Ideta O, Ohsawa R, Hayano Y, Iwata N, Sugiura M (1991) Linkage map of restriction fragment length polymorphism loci in rice. Jpn J Breed 41:665–670

    Article  CAS  Google Scholar 

  • Samborski S, Kozak M, Azevedo RA (2008) Does nitrogen uptake affect nitrogen uptake efficiency, or vice versa? Acta Physiol Plant 30:419–420

    Article  CAS  Google Scholar 

  • Senthilvel S, Vinod KK, Malarvizhi P, Maheswaran M (2008) QTL and QTL x environment effects on agronomic and nitrogen acquisition traits in rice. J Integr Plant Biol 50:1108–1117

    Article  CAS  PubMed  Google Scholar 

  • Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1419–1432

    Article  CAS  PubMed  Google Scholar 

  • Shan YH, Wang YL, Pan XB (2005) Mapping of QTLs for nitrogen use efficiency and related traits in rice (Oryza sativa L). Acta Agron Sin 4:721–727

    Google Scholar 

  • Shavrukov Y, Gencand Y, Hayes J (2012) The use of hydroponics in abiotic stress tolerance. Available from: http://www.intechopen.com/books/hydroponics-a-standard-methodology-for-plant-biological-researches/the-use-of-hydroponics-in-abiotic-stress-tolerance-research

  • Socolow RH (1999) Nitrogen management and the future of food: lessons from the management of energy and carbon. Proc Natl Acad Sci USA 96:6001–6008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiertz JHJ (2009) Nitrogen, sustainable agriculture and food security: a review. Agron Sustain Dev. doi:10.1051/agro:2008064

  • Tadahiko M (1997) Physiological nitrogen efficiency in rice: nitrogen utilization, photosynthesis, and yield potential. Plant Soil 196:201–210

    Article  Google Scholar 

  • Takahashi N (1984) Differentiation of ecotypes in Oryza sativa L. In: Tsunoda S, Takahashi N (eds) Biology of rice. Japan Scientific Press, Tokyo, pp 31–67

    Chapter  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production pratices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  • Tong H, Faloutsos C (2006) Center-piece subgraphs: problem definition and fast solutions. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, Aug. 20–23. ACM Press, Philadelphia, Pennsylvania, USA, pp 404–413

  • Vitousek PM, Naylor R, Crews T, David MB, Drinkwater LE, Holland E, Johnes PJ, Katzenberger J, Martinelli LA, Matson PA, Nziguheba G, Ojima D, Palm CA, Robertson GP, Sanchez PA, Townsend AR, Zhang FS (2009) Nutrient imbalances in agricultural development. Science 324:1519–1520

    Article  CAS  PubMed  Google Scholar 

  • Wang DL, Zhu J, Li ZK, Paterson AH (1999) Mapping QTLs with epistatic effects and QTL environment interact ions by mixed linear model approaches. Theor Appl Genet 99:1255–1264

    Article  Google Scholar 

  • Wei D, Cui KH, Pan JF, Ye GY, Xiang J, Nie LX, Huang JL (2011) Genetic dissection of grain nitrogen use efficiency and grain yield and their relationship in rice. Field Crop Res 124:340–346

    Article  Google Scholar 

  • Wei D, Cui K, Ye G, Pan J, Xiang J, Huang J, Nie X (2012) QTL mapping for nitrogen-use efficiency and nitrogen-deficiency tolerance traits in rice. Plant Soil 359:281–295

    Article  CAS  Google Scholar 

  • Wissuwa M, Wegner J, Ae N, Yano M (2002) Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor Appl Genet 105:890–897

    Article  CAS  PubMed  Google Scholar 

  • Wood S, Cowie A (2004) A review of greenhouse gas emission factors for fertiliser production. In: Report submitted to IEA Bioenergy Task 38, greenhouse gas balances of biomass and bioenergy systems. IEA, Paris, France

  • Wu P, Luo A, Zhu J, Yang J, Huang N, Senadhira D (1997) Molecular markers linked to genes underlying seedling tolerance for ferrous iron toxicity. Plant Soil 196:317–320

    Article  CAS  Google Scholar 

  • Wu P, Hu B, Liao CY, Zhu JM, Wu YR, Senadhira D, Paterson AH (1998) Characterization of tissue tolerance to iron by molecular markers in different lines of rice. Plant Soil 203:217–226

    Article  CAS  Google Scholar 

  • Wuebbles DJ (2009) Nitrous oxide: no laughing matter. Science 326:56–57

    Article  CAS  PubMed  Google Scholar 

  • Yano M, Sasaki T (1997) Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol 35:145–153

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Forno DA, Cock JH, Gomez KA (1976) Laboratory manual for physiological studied of rice, 3rd edn. Int Rice Res Inst, Manila

    Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HZ, Wang LX, Hua ZL, Zhu LH, Zhua YG (2004) Genetic dissection of the relationships of biomass production and partitioning with yield and yield related traits in rice. Plant Sci 167:1–8

    Article  CAS  Google Scholar 

  • Zhang XQ, Zhang GP, Guo LB, Wang HZ, Zeng DL, Dong GJ, Qian Q, Xue DW (2011) Identification of quantitative trait loci for Cd and Zn concentrations of brown rice grown in Cd-polluted soils. Euphytica 180:173–179

    Article  CAS  Google Scholar 

  • Zhu Z (2000) Loss of fertilizer N from plant-soil system and the strategies and techniques for its reduction (in Chinese with English abstract). Soil Environ Sci 9:1–6

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the Institut de Recherche pour le Développement (IRD) and the Centre de Coopération internationale en Recherche agronomique pour le Développement (CIRAD) in Montpellier (France) for their collaboration in this study by providing the segregating population and the genotypic map of the markers for the recombinant inbred lines (RILs)—European project EGRAM. We are also thankful to the CUD (Commission universitaire pour le Développement) scholarship program, Belgium, for their financial contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Bertin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.T.T., Dang, D.T., Van Pham, C. et al. QTL mapping for nitrogen use efficiency and related physiological and agronomical traits during the vegetative phase in rice under hydroponics. Euphytica 212, 473–500 (2016). https://doi.org/10.1007/s10681-016-1778-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-016-1778-z

Keywords

Navigation