Skip to main content

Advertisement

Log in

Identification of adaptation traits to drought in collections of maize landraces from southern Europe and temperate regions

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Breeding maize for drought tolerance is becoming a major challenge in a context of climate changes and restricted irrigation. Gene banks contain underused genetic resources and adaptation traits for drought tolerance may be present in some populations originating from dry regions. We screened, under contrasted water regimes in dry-Mediterranean climate, populations originating from dry cropping zones in Southern Europe, and other populations from temperate regions with a good combining ability for yield and good agronomic features under drought scenarios in a previous study. We evaluated 78 populations for leaf growth, anthesis-silking interval, number of ears per plant, number of kernels per plot, and grain yield in the presence and absence of water stress, in field conditions, over 2 years. Maximum grain yield and the sensitivity of grain yield to water deficit were highly variable. Positive correlations between sensitivity and performance in well-watered conditions were found for yield and number of kernels. Landraces originating from dry regions were generally less sensitive to water stress and had a limited grain yield potential, with variability observed even among accessions from the same survey area. However, some of them had a relatively high yield under stress conditions. During screening for traits associated with the maintenance of grain yield under conditions of water limitation, we identified sources of drought tolerance in breeding populations and landraces from temperate areas as well as in landraces collected in dry regions, indicating large reservoir of native traits in collections for breeding for drought-prone environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida GD, Makumbi D, Magorokosho C, Nair S, Borem A, Ribaut JM, Banziger M, Prasanna BM, Crossa J, Babu R (2013) QTL mapping in three tropical maize landraces reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theor Appl Genet 126(3):583–600. doi:10.1007/s00122-012-2003-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amigues JP, Debaeke P, Itier B, Lemaire G, Seguin B, Tardieu F, Thomas A (2006) Sécheresse et agriculture. Réduire la vulnérabilité de l’agriculture à un risque accru de manque d’eau. Expertise scientifique collective. INRA, France

  • Andrade FH, Echarte L, Rizzalli R, Della Maggiora A, Casanovas M (2002) Kernel number prediction in maize under nitrogen or water stress. Crop Sci 42:1173–1179

    Article  Google Scholar 

  • Araus JL, Sanchez C, Edmeades GO (2011) Phenotyping maize for adaptation to drought. In: Monneveux P, Ribaut JM (eds.) Drought phenotyping in crops: from theory to practice. CGIAR Generation Challenge Programme Texcoco, Mexico, pp 263–283

  • Bänziger M, Edmeades GO, Beck D, Bellon M (2000) Breeding for drought and nitrogen stress tolerance in maize. From theory to practice. http://repository.cimmyt.org/xmlui/bitstream/handle/10883/765/68579.pdf

  • Berardo N, Mazzinelli G, Valoti P, Lagana P, Redaelli R (2009) Characterization of maize germplasm for the chemical composition of the grain. J Agric Food Chem 57(6):2378–2384. doi:10.1021/jf803688t

    Article  CAS  PubMed  Google Scholar 

  • Betran FJ, Beck D, Banziger M, Edmeades GO (2003) Secondary traits in parental inbreds and hybrids under stress and non-stress environments in tropical maize. Field Crops Res 83(1):51–65. doi:10.1016/s0378-4290(03)00061-3

    Article  Google Scholar 

  • Bolanos J, Edmeades GO (1993) 8 cycles of selection for drought tolerance in lowland tropical maize. 2. Responses in reproductive behavior. Field Crops Res 31(3–4):253–268. doi:10.1016/0378-4290(93)90065-u

    Article  Google Scholar 

  • Bolanos J, Edmeades GO (1996) The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Res 48(1):65–80. doi:10.1016/0378-4290(96)00036-6

    Article  Google Scholar 

  • Cairns JE, Sanchez C, Vargas M, Ordonez R, Araus JL (2012) Dissecting maize productivity: ideotypes associated with grain yield under drought stress and well-watered conditions. J Integr Plant Biol 54(12):1007–1020. doi:10.1111/j.1744-7909.2012.01156.x

    Article  PubMed  Google Scholar 

  • Campos H, Cooper A, Habben JE, Edmeades GO, Schussler JR (2004) Improving drought tolerance in maize: a view from industry. Field Crops Res 90(1):19–34. doi:10.1016/j.fcr.2004.07.003

    Article  Google Scholar 

  • Campos H, Cooper M, Edmeades GO, Loffler C, Schussler JR, Ibanez M (2006) Changes in drought tolerance in maize associated with fifty years of breeding for yield in the US corn belt. Maydica 51(2):369–381

    Google Scholar 

  • Chapman SC, Edmeades GO (1999) Selection improves drought tolerance in tropical maize Landraces: II. Direct and correlated responses among secondary traits. Crop Sci 39(5):1315–1324

    Article  Google Scholar 

  • Chapuis R, Delluc C, Debeuf R, Tardieu F, Welcker C (2012) Resiliences to water deficit in a phenotyping platform and in the field: How related are they in maize? Eur J Agron 42:59–67. doi:10.1016/j.eja.2011.12.006

    Article  Google Scholar 

  • Chenu K, Chapman SC, Tardieu F, McLean G, Welcker C, Hammer GL (2009) Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize: a “gene-to-phenotype” modeling approach. Genetics 183(4):1507–1523. doi:10.1534/genetics.109.105429

    Article  PubMed  PubMed Central  Google Scholar 

  • Dignat G, Welcker C, Sawkins M, Ribaut JM, Tardieu F (2013) The growths of leaves, shoots, roots and reproductive organs partly share their genetic control in maize plants. Plant Cell Environ 36(6):1105–1119. doi:10.1111/pce.12045

    Article  CAS  PubMed  Google Scholar 

  • Duvick DN (2005) Genetic progress in yield of United States maize (Zea mays L.). Maydica 50:193–2002

    Google Scholar 

  • Edmeades GO (2013) Progress in achieving and delivering drought tolerance in maize—an update. In: ISAAA (ed)

  • Edmeades GO, Bolanos J, Chapman SC, Lafitte HR, Banziger M (1999) Selection improves drought tolerance in tropical maize landraces: I. Gains in biomass, grain yield, and harvest index. Crop Sci 39(5):1306–1315

    Article  Google Scholar 

  • Ferro RA, Brichette I, Evgenidis G, Karamaligkas C, Moreno-Gonzalez J (2007) Variability in European maize (Zea mays L.) landraces under high and low nitrogen inputs. Genet Resour Crop Evol 54(2):295–308. doi:10.1007/s10722-005-4500-x

    Article  Google Scholar 

  • Frankel OH (1984) Genetic perspectives of germplasm conservation. In: Arber WK, Llimensee K, Peacock WJ, Starlinger P (eds) Genetic manipulation: impact of man and society. Cambridge University Press, Cambridge, pp 161–170

    Google Scholar 

  • Frova C, Krajewski P, di Fonzo N, Villa M (1999) Genetic analysis of drought tolerance in maize by moleculars markers. I. Yield components. Theor Appl Genet 99:280–288

    Article  Google Scholar 

  • Gallais A, Monod JP (1998) Management of the genetic resources of maize in France: from their characterization to the first stages of their evaluation. Comptes Rendus de l’Academie d’Agriculture de France 84(3):173–181

    Google Scholar 

  • Gallais A, Duval H, Garnier P, Charcosset A (1992) Un exemple de gestion des ressources génétiques en vue de la sélection. In: Complexes d’espèces, flux de gènes et ressources génétiques des plantes. Colloque en hommage à Jean Pernès. Bureau des ressources génétiques, pp 476–490

  • Gallais A, Barriere A, Boyat A, Charcosset A, Dallard J, Derieux M, Desselle JL, Dubreuil P, Duval H, Garnier P, Gouesnard B, Lavergne V, Lefort M, Miclo P, Montalant Y, Panouille A, Pollacsek M, Rebourg C, Rimieri P, Monod JP, Baratin A, Baron M, Berthe G, Cambolive M, Carolo P, Devaux F (2000) A French cooperative programme for management and utilization of maize genetic resources. Broadening the genetic base of crop production. Cabi, Wallingford UK, pp 331–340

    Google Scholar 

  • Gauthier P, Gouesnard B, Dallard J, Redaelli R, Rebourg C, Charcosset A, Boyat A (2002) RFLP diversity and relationships among traditional European maize landraces. Theor Appl Genet 105(1):91–99. doi:10.1007/s00122-002-0903-7

    Article  CAS  PubMed  Google Scholar 

  • Gilmour A, Gogel B, Cullis B, Thomson R (2009) ASReml User Guide release 3.0. VSN International Ltd, Hemel Hempstead, UK

  • Gouesnard B, Dallard J, Bertin P, Boyat A, Charcosset A (2005) European maize landraces: genetic diversity, core collection definition and methodology of use. Maydica 50(3–4):225–234

    Google Scholar 

  • Groupe maïs DGAP-INRA, Promaïs (1994) Cooperative program for management and utilization of maize genetic resources. Paper presented at the Proccedings of the Genetic Resources Section Eucapia, Clermont Ferrand, France, 15–18 March 1994

  • Grzesiak MT, Marcińska I, Janowiak F, Rzepka A, Hura T (2012) The relationship between seedling growth and grain yield under drought conditions in maize and triticale genotypes. Acta Physiol Plant 34(5):1757–1764. doi:10.1007/s11738-012-0973-3

    Article  Google Scholar 

  • Hao Z, Li X, Xie C, Li M, Zhang D, Bai L, Zhang S (2008) Two consensus quantitative trait loci clusters controlling anthesis-silking interval, ear setting and grain yield might be related with drought tolerance in maize. Ann Appl Biol 153:73–83

    Article  Google Scholar 

  • Hao Z-F, Li X-H, Su Z-J, Xie C-X, Li M-S, Liang X-L, Weng J-F, Zhang D-G, Li L, Zhang S-H (2011) A proposed selection criterion for drought resistance across multiple environments in maize. Breed Sci 61(2):101–108. doi:10.1270/jsbbs.61.101

    Article  Google Scholar 

  • Harrison MT, Tardieu F, Dong Z, Messina CD, Hammer GL (2014) Characterizing drought stress and trait influence on maize yield under current and future conditions. Glob Chang Biol 20(3):867–878. doi:10.1111/gcb.12381

    Article  PubMed  Google Scholar 

  • Heisey PW, Morris ML (2006) Economic impact of water-limited conditions on cereal grain productions. In: Ribaut JM (ed) Drought adaptation in cereals. The Haworth Press, Philadelphia, pp 17–48

    Google Scholar 

  • Hodgkin T, Brown AHD, van Hintum TJL, Morales BAV (1995) Core collections of plant genetic resources. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Hoisington D, Khairallah M, Reeves T, Ribaut JM, Skovmand B, Taba S, Warburton ML (1999) Plant genetic resources: what can they contribute toward increased crop productivity? PNAS 96:5937–5943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Hao Z, Xie C, Crossa J, Araus J-L, Gao S, Vivek BS, Magorokosho C, Mugo S, Makumbi D, Taba S, Pan G, Li X, Rong T, Zhang S, Xu Y (2011) Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crops Res 124(1):37–45. doi:10.1016/j.fcr.2011.06.003

    Article  Google Scholar 

  • Malvar RA, Butron A, Alvarez A, Ordas B, Soengas P, Revilla P, Ordas A (2004) Evaluation of the European Union maize landrace core collection for resistance to Sesamia nonagrioides (Lepidoptera: Noctuidae) and Ostrinia nubilalis (Lepidoptera: Crambidae). J Econ Entomol 97(2):628–634. doi:10.1603/0022-0493-97.2.628

    Article  CAS  PubMed  Google Scholar 

  • Malvar RA, Butron A, Alvarez A, Padilla G, Cartea ME, Revilla P, Ordas A (2007) Yield performance of the European Union Maize Landrace Core Collection under multiple corn borer infestations. Crop Prot 26(5):775–781. doi:10.1016/j.cropro.2006.07.004

    Article  Google Scholar 

  • Mercer K, Martinez-Vasquez A, Perales HR (2008) Asymmetrical local adaptation of maize landraces along an altitudinal gradient. Evol Appl 1(3):489–500. doi:10.1111/j.1752-4571.2008.00038.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Messmer R, Fracheboud Y, Banziger M, Vargas M, Stamp P, Ribaut JM (2009) Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet 119(5):913–930. doi:10.1007/s00122-009-1099-x

    Article  PubMed  Google Scholar 

  • Mieg IB, Moreno-Gonzalez J, Lopez A (2001) Variability of European maize landraces for forage digestibility using near infrared reflectance spectroscopy (NIRS). Maydica 46(4):245–252

    Google Scholar 

  • Monneveux P, Sanchez C, Beck D, Edmeades GO (2006) Drought tolerance improvement in tropical maize source landraces: evidence of progress. Crop Sci 46(1):180–191. doi:10.2135/cropsci2005.04-0034

    Article  Google Scholar 

  • Monteith JL (1977) Climate and efficiency of crop production in Britain. Philos Trans R Soc Lond Ser B 281(980):277–294. doi:10.1098/rstb.1977.0140

    Article  Google Scholar 

  • Ortiz R, Taba S, Tovar VHC, Mezzalama M, Xu Y, Yan J, Crouch JH (2010) Conserving and enhancing maize genetic resources as global public goods—a perspective from CIMMYT. Crop Sci 50(1):13. doi:10.2135/cropsci2009.06.0297

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. doi:http://www.R-project.org/

  • Revilla P, Soengas P, Cartea ME, Malvar RA, Ordas A (2003) Isozyme variability among European maize Landraces and the introduction of maize in Europe. Maydica 48(2):141–152

    Google Scholar 

  • Reymond M, Muller B, Tardieu F (2004) Dealing with the genotype x environment interaction via a modelling approach: a comparison of QTLs of maize leaf length or width with QTLs of model parameters. J Exp Bot 55(407):2461–2472. doi:10.1093/jxb/erh200

    Article  CAS  PubMed  Google Scholar 

  • Ribaut JM, Hoisington DA, Deutsch JA, Jiang C, de Gonzalez Leon D (1996) Identification of quantitative trait loci under drought conditions in tropical maize.1. Flowering parameters and the anthesis-silking interval. Theor Appl Genet 92(7):905–914. doi:10.1007/bf00221905

    Article  CAS  PubMed  Google Scholar 

  • Ribaut JM, Jiang C, GonzalezdeLeon D, Edmeades GO, Hoisington DA (1997) Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor Appl Genet 94(6–7):887–896. doi:10.1007/s001220050492

    Article  Google Scholar 

  • Rodriguez VM, Romay MC, Ordas A, Revilla P (2010) Evaluation of European maize (Zea mays L.) germplasm under cold conditions. Genet Resour Crop Evol 57(3):329–335. doi:10.1007/s10722-009-9529-9

    Article  Google Scholar 

  • Salhuana W, Pollak L (2006) Latin American maize project (LAMP) and germplasm enhancement of maize (GEM) project: generating useful breeding germplasm. Maydica 51:339–355

    Google Scholar 

  • Semagn K, Beyene Y, Warburton ML, Tarekegne A, Mugo S, Meisel B, Sehabiague P, Prasanna BM (2013) Meta-analyses of QTL for grain yield and anthesis silking interval in 18 maize landraces evaluated under water-stressed and well-watered environments. BMC Genomics. doi:10.1186/1471-2164-14-313

    PubMed  PubMed Central  Google Scholar 

  • Tardieu F, Granier C, Muller B (2011) Water deficit and growth. Co-ordinating processes without an orchestrator? Curr Opin Plant Biol 14(3):283–289. doi:10.1016/j.pbi.2011.02.002

    Article  PubMed  Google Scholar 

  • Tuberosa R, Sanguineti MC, Landi P, Salvi S, Casarini E, Conti S (1998) RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of drought-stresses maize (Zea mays L.). Theor Appl Genet 97:744–755

    Article  CAS  Google Scholar 

  • Tuberosa R, Sanguineti MC, Landi P, Giuliani MM, Salvi S, Conti S (2002) Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol 48:667–712

    Article  Google Scholar 

  • Welcker C, Boussuge B, Bencivenni C, Ribaut JM, Tardieu F (2007) Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of anthesis-silking interval to water deficit. J Exp Bot 58(2):339–349. doi:10.1093/jxb/erl227

    Article  CAS  PubMed  Google Scholar 

  • Welcker C, Sadok W, Dignat G, Renault M, Salvi S, Charcosset A, Tardieu F (2011) A common genetic determinism for sensitivities to soil water deficit and evaporative demand: meta-analysis of quantitative trait loci and introgression lines of maize. Plant Physiol 157(2):718–729. doi:10.1104/pp.111.176479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeven AC (1998) Landraces: a review of definitions and classifications. Euphytica 104:127–139

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the French Ministry of Agriculture, and was jointly funded by the Promaïs association. We thank G. Evgenidis (Cereal Institute - National Agricultural Research Foundation in Thermi Thessaloniki, Greece), M. Motto (Istituto Sperimentale per la Cerealicoltura in Bergamo, Italy), A. Alvarez (CSIC Estacion Experimental de Aula Dei in Zaragoza, Spain) for supplying some of the materials. The other accessions were provided from the French maize resource network of National Institute for Agronomic Research in Mauguio, France (http://bioweb.supagro.inra.fr/multicrop/ choice: maize). We thank Ch. Fournier and V. Negre (UMR Lepse in Montpellier, France) for calculating LAI with the Cincalli database. We thank the technicians from the Mauguio Experimental Unit for scoring traits and B. Suard (UMR Lepse) for controlling and characterizing soil water status in the four experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Gouesnard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouesnard, B., Zanetto, A. & Welcker, C. Identification of adaptation traits to drought in collections of maize landraces from southern Europe and temperate regions. Euphytica 209, 565–584 (2016). https://doi.org/10.1007/s10681-015-1624-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1624-8

Keywords

Navigation