Skip to main content
Log in

The plant size and the spine characteristics of the first generation progeny obtained through the cross-pollination of different genotypes of Cactaceae

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The main characteristics (plant diameter, number of spine/areoles and length of spines) of 16 cactus hybrids were analysed and the genetic variability and broad-sense heritability was studied. The descendants were obtained through a cyclic cross-pollination pattern, with the parental forms chosen based on aesthetic considerations. Cross-pollination among Rebutia senilis × Aylostera muscula, Rebutia tarvitaensis × Aylostera muscula, Aylostera flavistyla × Rebutia senilis, Rebutia senilis × Aylostera flavistyla, Aylostera muscula × Aylostera albiflora and Rebutia senilis × Aylostera albiflora did not succeed, whereas all of the other hand-pollinated crosses succeeded and produced viable seeds. The highest values of the analysed characters were observed in the progeny of A. fiebrigii var. densiseta × R. senilis and A. buiningiana × A. vallegardensis and the artificial selection to identify plants with special decorative traits was extremely efficient among them. In the F1 population of the studied crosses, a large genetic diversity was found within hybrid combinations (families), between combinations and a different variation was recorded among the analysed traits. The broad-sense heritability ranged between 0.909 (plant diameter) and 0.948 (spines length). All of the characters analysed, in the present experience, have a strong genetic determinism, being greatly influenced by the genotype and to a lesser extent, by the cultivation conditions (greenhouse).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Backeberg C (1968–1977) Das Kaktenlexicon. Veb Gustav Fischer, Verlang Jena

  • Boyle TH (1997) The genetics of self-incompatibility in the genus Schlumbergera (Cactaceae). J Hered 88:209–214

    Google Scholar 

  • Boyle TH, Anderson EF (2002) Biodiversity and conservation. In: Nobel PS (ed) Cacti: biology and uses. University of California Press, Berkeley, pp 125–141

    Google Scholar 

  • Boyle TH, Menalled FD, O’Leary MC (1994) The occurrence and physiological breakdown of self-incompatibility in Easter cactus. J Am Soc Hortic Sci 119:1060–1067

    Google Scholar 

  • Burd M (1998) “Excess” flower production and selective fruit abortion: a model of potential benefits. Ecology 79:2123–2132. doi:10.1890/0012-9658(1998)079[2123:EFPASF

    Google Scholar 

  • Casas A, Valiente-Banuet A, Rojas-Martinez A, Davila P (1999) Second generation experimental hybridizations in the Echinocereus × Lloydii complex (Cactaceae), and further documentation of dioecy in E-Coccineus. Am J Bot 864:534–542. doi:10.1007/BF00985335

    Article  Google Scholar 

  • Figueredo CJ, Nassar JM, García-Rivas AE, González-Carcacía JA (2010) Population genetic diversity and structure of Pilosocereus tillianus (Cactaceae, Cereeae), a columnar cactus endemic to the Venezuelan Andes. J Arid Environ 74(11):1392–1398. doi:10.1016/j.jaridenv.2010.05.020

    Article  Google Scholar 

  • Gordon IL (1999) Quantitative genetics of intraspecies hybrids. Heredity 83:757–764

    Google Scholar 

  • Hentzschel G, Hentzschel K (2001) Sulcorebutia or Rebutia?. Cactus Succul J 73(5):237–242

    Google Scholar 

  • Hewitt T (1993). The complete book of cacti and succulents: the definitive practical guide to cultivation, propagation, and display, 1st Canadian Ed, Canada

  • Holland JB, Nyquist WE, Cervantes-Martinez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–112. doi:10.1002/9780470650202.ch2

    Google Scholar 

  • IUCN (2008) The international union for conservation of nature. http://www.iucn.org/

  • Leite MSO, Peternelli LA, Barbosa MHP (2006) Effects of plot size on the estimation of genetic parameters in sugarcane families. Crop Breed Appl Biotechnol 6:40–46. doi:10.1590/S0100-204X2009001200002

    Google Scholar 

  • Lichtenzveig J, Abbo S, Nerd A, Tel-Zur N, Mizrahi Y (2000) Cytology and mating systems in the climbing cacti Hylocereus and Selenicereus. Am J Bot 87:1058–1065

    Article  PubMed  CAS  Google Scholar 

  • Loik ME, Nobel PS (1991) Water relations and mucopolysaccharide increases for a winter hardy cactus during acclimation to subzero temperatures. Oecologia 88:340–346. doi:10.1007/BF00317576

    Article  Google Scholar 

  • Machado MC (2008) What is the role of hybridization in the evolution of the Cactaceae? Bradleya 26:1–18

    Google Scholar 

  • McIntosh ME (2002) Plant size, breeding system, and limits to reproductive success in two sister species of Ferocactus (Cactaceae). Plant Ecol 162:273–288. doi:10.1023/A:1020329718917

    Article  Google Scholar 

  • Meier E (1995) Easter cacti (Rhipsalidopsis; Cactaceae). Haseltonia 3:10–24

    Google Scholar 

  • Mihalte L, Sestras R, Feszt G, Vilcan A (2009) The variability of seeds weight and germination percentage of different Cactaceae genera (Aylostera, Mediolobivia, Rebutia and Sulcorebutia). Bulletin of UASVM Cluj-Napoca. Horticulture 66(2):66–74

  • Mihalte L, Sestras RE, Feszt G, Sestras AF (2010) Variability of seed traits in interspecific and inter-generic combinations between different genotypes of Cactaceae. Not Bot Horti Agrobo 38(3):246–252

    Google Scholar 

  • Mondragon-Jacobo C, Bordelon BB (1996) Cactus pear (Opuntia ssp.) breeding for fruit production. J Prof Assoc Cactus 1:19–35

    Google Scholar 

  • Nobel PS (2002) Cacti, biology and uses. Cambridge University Press, New York

    Google Scholar 

  • Oldfield S (1997) Cactus and succulent plants: status survey and conservation action plan. IUCN/SSC cactus and succulent specialist group. International Union for Conservation of Nature and Natural Resources. Gland, Switzerland and Cambridge

    Google Scholar 

  • Ortega-Baes P, Aparicio-Gonzalez M, Galindez G, Del Fueyo P, Suhring S, Rojas-Arechiga M (2010) Are cactus growth forms related to germination responses to light? A test using Echinopsis species. Acta Oecol Intern J Ecol 36(3):339–342. doi:10.1016/j.actao.2010.02.006

    Article  Google Scholar 

  • Oyiga BC, Uguru MI, Aruah CB (2010) Pollen behaviour and fertilization impairment in Bambara groundnut (Vigna subterrenea [L.] Verdc.). J Plant Breed Crop Sci 2(1):12–23

    Google Scholar 

  • Parish J, Felker P (1995) Evaluation of fruit quality and production of cold-hardy Opuntia fruit clones. In: Felker P, Moss J (eds) Kingsville professional association for cactus development first annual conference, Texas, pp 12a–12e

  • Parra F, Casas A, Peñaloza-Ramírez JM, Cortés-Palomec AC, Rocha-Ramírez V, González-Rodríguez A (2010) Evolution under domestication: ongoing artificial selection and divergence of wild and managed Stenocereus pruinosus (Cactaceae) populations in the Tehuacán Valley, Mexico. Ann Bot 106(30):483–496

    Google Scholar 

  • Peharec P, Posilović H, Balen B, Krsnik-Rasol M (2010) Spine micromorphology of normal and hyperhydric Mammillaria gracilis Pfeiff. (Cactaceae) shoot. J Microsc 239(1):78–86

  • Piepho HP, Möhring J (2007) Computing heritability and selection response from unbalanced plant breeding trials. Genetics 177(3):1881–1888. doi:10.1534/genetics.107.074229

    Article  PubMed  Google Scholar 

  • Pilbeam J (1997) The cactus file handbook 2. Rebutia, Ciro Publishing Services Ltd., pp 73–87

    Google Scholar 

  • Reed GF, Lynn F, Meade BD (2002) Use of coefficient of variation in assessing variability of quantitative assays. Clin Diagn Lab Immunol 9(6):1235–1239. doi:10.1128/CDLI.10.6.1162.2003

    PubMed  Google Scholar 

  • Sestras RE, Moldovan SD, Popescu CF (2008) Variability and heritability of several important traits for grape production and breeding. Not Bot Horti Agrobo 36(1):88–97

    Google Scholar 

  • Sestras RE, Pamfil D, Sestras A, Jäntschi L, Bolboaca SD, Dan C (2009) Inheritance of vigor tree in F1 apple interspecific hybrids. Not Bot Horti Agrobo 37(1):70–73

    Google Scholar 

  • Tel-Zur N, Abbo S, Bar-Zvi D, Mizrahi Y (2003) Chromosome doubling in vine cacti hybrids. J Hered 94(4):329–333

    Google Scholar 

  • Wang X, Felker P, Burow MD, Paterson AH (1998) Comparison of RAPD marker patterns to morphological and physiological data in the classification of Opuntia accessions. J Prof Assoc Cactus 3:3–14

    Google Scholar 

  • Zak MR, Cabido M, Hodgson JG (2004) Do subtropical seasonal forests in the Gran Chaco, Argentina, have a future? Biol Conserv 120:589–598. doi:10.1016/j.biocon.2004.03.034

    Article  Google Scholar 

Download references

Acknowledgments

This study was financed by the POSDRU/89/1.5/S/62371 project („Postdoctoral School of Agriculture and Veterinary Medicine”, Romania).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucica Mihalte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihalte, L., Sestras, R.E. The plant size and the spine characteristics of the first generation progeny obtained through the cross-pollination of different genotypes of Cactaceae. Euphytica 184, 369–376 (2012). https://doi.org/10.1007/s10681-011-0597-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0597-5

Keywords

Navigation