Skip to main content

Advertisement

Log in

Application of biotechnology in breeding lentil for resistance to biotic and abiotic stress

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Lentil is a self-pollinating diploid (2n = 14 chromosomes) annual cool season legume crop that is produced throughout the world and is highly valued as a high protein food. Several abiotic stresses are important to lentil yields world wide and include drought, heat, salt susceptibility and iron deficiency. The biotic stresses are numerous and include: susceptibility to Ascochyta blight, caused by Ascochyta lentis; Anthracnose, caused by Colletotrichum truncatum; Fusarium wilt, caused by Fusarium oxysporum; Sclerotinia white mold, caused by Sclerotinia sclerotiorum; rust, caused by Uromyces fabae; and numerous aphid transmitted viruses. Lentil is also highly susceptible to several species of Orabanche prevalent in the Mediterranean region, for which there does not appear to be much resistance in the germplasm. Plant breeders and geneticists have addressed these stresses by identifying resistant/tolerant germplasm, determining the genetics involved and the genetic map positions of the resistant genes. To this end progress has been made in mapping the lentil genome and several genetic maps are available that eventually will lead to the development of a consensus map for lentil. Marker density has been limited in the published genetic maps and there is a distinct lack of co-dominant markers that would facilitate comparisons of the available genetic maps and efficient identification of markers closely linked to genes of interest. Molecular breeding of lentil for disease resistance genes using marker assisted selection, particularly for resistance to Ascochyta blight and Anthracnose, is underway in Australia and Canada and promising results have been obtained. Comparative genomics and synteny analyses with closely related legumes promises to further advance the knowledge of the lentil genome and provide lentil breeders with additional genes and selectable markers for use in marker assisted selection. Genomic tools such as macro and micro arrays, reverse genetics and genetic transformation are emerging technologies that may eventually be available for use in lentil crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrecht, H., R. Wattiez, J.M. Ruysschaaert & F. Homble, 2000. Purification and characterization of two voltage-dependent anion channel isoforms from plant seeds. Plant Physiol 124: 1181–1190.

    Article  CAS  PubMed  Google Scholar 

  • Ahmed, S. & R.A.A. Morrall, 1996. Field reactions of lentil lines and cultivars to isolates of Ascochyta fabae f. sp. lentis. Can J Plant Path 18: 362–369.

    Google Scholar 

  • Ahmed, S., R.A.A. Morrall & J.W. Sheard, 1996. Virulence of Ascochyta fabae f. sp. lentis on lentil. Can J Plant Path 18: 354–361.

    Google Scholar 

  • Andrahennadi, C.P., A.E. Slinkard & A. Vandenberg, 1996. Ascochyta resistance in lentil. LENS Newslett 23: 5–7.

    Google Scholar 

  • Ashraf, M. & A. Waheed, 1990. Screening of local/exotic accessions of lentil (Lens culinaris Medic.) for salt tolerance at two growth stages. Plant Soil 128: 167–176.

    Article  CAS  Google Scholar 

  • Ashraf, M. & A. Waheed, 1993. Responses of some local/exotic accessions of lentil (Lens culinaris Medic.) to salt stress. Crop Sci 170: 103–112.

    CAS  Google Scholar 

  • Bachem, C.W.B., R.S. vander Hoeven, S.M. deBruijn, D. Vreugdenhil, M. Zabeau & R.G.F. Visser, 1996. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. Plant J 9: 745–753.

    Article  CAS  PubMed  Google Scholar 

  • Barzen, E., W. Mechelke, E. Ritter, E. Schulte-Kappert & F. Salamini, 1995. An extended map of the sugar beet genome containing AFLP and RFLP loci. Theor Appl Genet 90: 189–193.

    Article  CAS  Google Scholar 

  • Becher, M., I.N. Talke, L. Krall & U. Krämer, 2003. Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37: 251–268.

    Google Scholar 

  • Berry, S.T., A.J. Leon, C.C. Hanfrey, P. Challis, A. Burkholz, S.J. Barnes, G.K. Rufener, M. Lee & P.D.S. Caligari, 1995. Molecular marker analysis of Helianthus annuus L. 2. Construction of an RFLP linkage map for cultivated sunflower. Theor Appl Genet 91: 195–199.

    Article  CAS  Google Scholar 

  • Bevan, M., K. Mayer, O White, J.A. Eisen, D. Preuss, T. Bureau, S.L. Salzberg, & H.-W. Mewes, 2001. Sequence and analysis of the Arabidopsis genome. Curr Opin in Plant Biol 4: 105–110.

    Article  CAS  Google Scholar 

  • Blanchard, A.P. & S.H. Friend, 1999. Cheap DNA arrays – it’s not all smoke and mirrors. Nat Biotech 17: 953.

    Article  CAS  Google Scholar 

  • Brachmann, A.J. Konig, C. Julius & M. Feldbrugge, 2004. A reverse genetic approach for generating gene replacement mutants in Ustilago maydis. Mol Gen Genom 272: 216–226.

    CAS  Google Scholar 

  • Buddenhagen, I.W. & R.A. Richards, 1988. Breeding cool season food legumes for improved performance in stress environments. In: R.J. Summerfield (Ed.), World Crops: Cool Season Food Legumes, pp. 81–95. Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  • Caldwell, D.G., N. McCallum, P. Shaw, G.J. Muehlbauer, D.F. Marshall & R. Waugh, 2004. A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40: 143–150.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J.J.W., R. Wu, P.C. Yang, J.Y. Huang, Y.P. Sher, M.H. Han, W.C. Kao, P.J. Lee, T.F. Chiu, F. Chang, Y.W. Chu, C.W. Wu & K. Peck, 1998. Profiling expression patterns and isolating differentially expressed genes by cDNA microarray system with colorimetry detection. Genomics 51: 313–324.

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury, M.A., C.P. Andrahennadi, A.E. Slinkard & A. Vandenberg, 2001. RAPD and SCAR markers for resistance to ascochyta blight in lentil. Euphytica 118: 331–337.

    Article  CAS  Google Scholar 

  • Christou P., 1997. Biotechnology applied to grain legumes. Field Crops Res 53: 83–97.

    Article  Google Scholar 

  • Close, T.J., S.I. Wanamaker, R.A. Caldo, S.M. Turner, D.A. Ashlock, J.A. Dickerson, R.A. Wing, G.J. Muehlbauer, A. Kleinhofs & R.P. Wise, 2004. A new resource for cereal genomics: 22k barley genechip comes of age. Plant Physiol 134: 960–968.

    Article  CAS  PubMed  Google Scholar 

  • Cho, S., W. Chen & F.J. Muehlbauer, 2005. Constitutive expression of the Flavanone 3-hydroxylase gene related to pathotype-specific ascochyta blight resistance in Cicer arietinum L. Physiol Mol Plant Path 67: 100–107.

    Article  CAS  Google Scholar 

  • Colbert, T., B.J. Till, R. Tompa, S. Reynolds, M.N. Steine, A.T. Yeung, C.M. McCallum, L. Comai & S. Henikoff, 2001. High throughput screening for induced point mutations. Plant Physiol 126: 480–484.

    Article  CAS  PubMed  Google Scholar 

  • Collard, B.C.Y., E.C.K. Pang, P.K. Ades & P.W.J. Taylor, 2003. Preliminary investigation of QTLs associated with seedling resistance to ascochyta blight from Cicer echinospermum, a wild relative of chickpea. Theor Appl Genet 107: 719–729.

    Article  CAS  PubMed  Google Scholar 

  • Cubero, J.I., 1981. Origin, taxonomy and domestication. In: C. Webb & G. Hawtin (Eds.), Lentils, pp. 15–38. CAB, Slough, UK.

    Google Scholar 

  • Donson, J., Y.W. Fang, G. Espiritu-Santo, W.M. Xing, A. Salazar, S. Miyamoto, V. Armendarez & W. Volkmuth, 2002. Comprehensive gene expression analysis by transcript profiling. Plant Mol Biol 48: 75–97.

    Article  CAS  PubMed  Google Scholar 

  • Durán, Y., R. Fratini, P. García & M. Pérez de la Vega, 2004. An intersubspecific genetic map of Lens. Theor Appl Genet 108: 1265–1273.

    Article  PubMed  CAS  Google Scholar 

  • Durán, Y., R. Fratini, S. Morales, M. Fernández, P. García & M. Pérez de la Vega, 2002. A genetic map of lentil. First International Conference on Legume Genomics and Genetics: Translation to Crop Improvement, June 2–6, 2002, Minneapolis-St. Paul, MN.

  • El Yahyaoui, F., H. Küster, B.B. Amor, N. Hohnjec, A. Pühler, A. Becker, J. Gouzy, T. Vernié, C. Gough, A. Niebel, L. Godiard & P. Gamas, 2004. Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program. Plant Physiol 136: 3159–3176.

    Article  CAS  PubMed  Google Scholar 

  • Endo, M., H. Matsubara, T. Kokubun, H. Masuko, Y. Takahata, T. Tsuchiya, H. Fukuda, T. Demura & M. Watanabe, 2002. The advantages of cDNA microarray as an effective tool for identification of reproductive organ-specific genes in a model legume, Lotus japonicus. FEBS Lett 13; 514(2–3): 229–237.

    Article  CAS  Google Scholar 

  • Erskine, W., 1997. Lessons for breeders from land races of lentil. Euphytica 93: 107–112.

    Article  Google Scholar 

  • Erskine, W., & M.C. Saxena, 1993. Problems and prospects of stress resistance breeding in lentil. In: K.B. Singh & M.C. Saxena (Eds.), Breeding for Stress Tolerance in Cool-Season Food Legumes, pp. 56–62. Wiley.

  • Erskine, W., & A. Sarker, 1997. Lentil: The Bangladesh breakthrough. Caravan 6: 8–9.

    Google Scholar 

  • Erskine, W., K. Myveci & N. Izgin, 1981. Screening a world lentil collection for cold tolerance. LENS Newsletter 8: 5–8.

    Google Scholar 

  • Erskine, W., N.P. Saxena & M.C. Saxena, 1993. Iron Deficiency in lentil: Yield loss and geographic distribution in a germplasm collection. Plant Soil 15: 249–254.

    Article  Google Scholar 

  • Erskine, W., R.H. Ellis, R.J. Summerfield, E.H. Roberts & A. Hussain, 1990. Characterisation of responses to temperature and photoperiod for time to flowering in a world lentil collection. Theor Appl Genet 80: 193–199.

    Article  Google Scholar 

  • Erskine, W., A. Hussain, M. Tahir, A. Bahksh, R.H. Ellis, R.J. Summerfield & E.H. Roberts, 1994a. Field evaluation of a model of photothermal flowering responses in a world lentil collection. Theor Appl Genet 88: 423–428.

    Article  Google Scholar 

  • Erskine, W., M. Tufail, A. Russell, M.C. Tyagi, M.M. Rahman & M.C. Saxena, 1994b. Current and future strategies in breeding lentil for resistance to biotic and abiotic stresses. Euphytica 73: 127–135.

    Article  Google Scholar 

  • Eujayl, I., M. Baum, W. Erskine, E. Pehu & F.J. Muehlbauer, 1997. The use of RAPD markers for lentil genetic mapping and the evaluation of distorted F2 segregation. Euphytica 96: 405–412.

    Article  CAS  Google Scholar 

  • Eujayl, I., M. Baum, W. Powell, W. Erskine & E. Pehu, 1998a. A genetic linkage map of lentil (Lens sp.) based on RAPD and AFLP markers using recombinant inbred lines. Theor Appl Genet 97: 83–89.

    Article  CAS  Google Scholar 

  • Eujayl, I., W. Erskine, B. Bayaa, M. Baum, E. Pehu, 1998b. Fusarium vascular wilt in lentil: Inheritance and identification of DNA markers for resistance. Plant Breed 117: 497–499.

    Article  Google Scholar 

  • Eujayl, I., W. Erskine, M. Baum & E. Pehu, 1999. Inheritance and linkage analysis of frost injury in lentil. Crop Sci 39: 639–642.

    Article  Google Scholar 

  • FAOSTAT data, 2005 http://faostat.fao.org/faostat/collections?version=ext&hasbulk=0&subset=agriculture.

  • Fedorova M., J. van de Mortel, P.A. Matsumoto, J. Cho, C.D. Town, K.A. VandenBosch, J.S. Gantt & C.P. Vance, 2002. Genome-Wide identification of nodule-specific transcripts in the model legume M. truncatula. Plant Physiol 130: 519–537.

    Article  CAS  PubMed  Google Scholar 

  • Feldmann, K.A., 1991. T-DNA insertion mutagenesis in Arabidopsis-mutational spectrum. Plant J 1: 71–82.

    Article  CAS  Google Scholar 

  • Ferguson, M.E. & W. Erskine, 2001. Lentils (Lens L.). In: N. Maxted & S.J.Bennett (Eds.), Plant Genetic Resources of Legumes in the Mediterranean, pp. 125–131. Kluwer Academic Publishers, Dordrecht, The Netherlands.

  • Ferguson, M.E., N. Maxted, M. van Slageren & L.D. Robertson, 2000. A re-assessment of the taxonomy of Lens Mill. (Leguminosae, Papilionoideae, Vicieae). Bot J Linn Soc 133: 41–59.

    Article  Google Scholar 

  • Flint-Garcia, S.A., J.M. Thornsberry & E.S. Buckler, 2003. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54: 357–374.

    Article  CAS  PubMed  Google Scholar 

  • Ford, R., P. Garnier-Géré, M. Nasir & P.W.J. Taylor, 2000. The structure of A. lentis in Australia revealed with RAPD markers. Aust Plant Path 29: 36–45.

    Article  Google Scholar 

  • Ford, R., E.C.K. Pang & P.W.J. Taylor, 1997. Diversity analysis and species identification in Lens using PCR generated markers. Euphytica 96: 247–255.

    Article  CAS  Google Scholar 

  • Ford, R., E.C.K. Pang & P.W.J Taylor, 1999. Genetics of resistance to ascochyta blight (A. lentis) of lentil and the identification of closely linked RAPD markers. Theor Appl Genet 98: 93–98.

    Article  CAS  Google Scholar 

  • Galasso, I., T. Schmidt & D. Pignone, 2001. Identification of Lens culinaris ssp. culinaris chromosomes by physical mapping of repetitive DNA sequences. Chrom Res 9: 199–209.

    Article  CAS  PubMed  Google Scholar 

  • Gale, M.D., & J.R. Witcombe, 1992. DNA markers and marker-mediated applications in plant breeding, with particular reference to pearl millet breeding. In: J.P. Moss (Ed.), Biotechnology and Crop Improvement in Asia, pp. 323–332. ICRISAT, Patancheru.

    Google Scholar 

  • Gebhardt, C., A. Ballvora, B. Walkemeir, P. Oberhagemann & K. Schuler, 2004. Assessing genetic potential in germplasm collections of crop plants by marker-trait association: A case study for potatoes with quantitative variation of resistance to late blight and maturity type. Mol Breed 13: 93–102.

    Article  CAS  Google Scholar 

  • Goff, S., D. Ricke, T.-H. Lan, G. Presting, R. Wang, M. Dunn, J. Glazebrook, A. Sessions, P. Oeller & H. Varma, 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92–100.

    Article  CAS  PubMed  Google Scholar 

  • Gu, W.K., N.F. Weeden, J. Yu & D.H. Wallace, 1995. Large-scale, cost-effective screening of PCR products in marker-assisted selection applications. Theor Appl Genet 91: 465–470.

    Article  CAS  Google Scholar 

  • Gulati, A., P. Schryer & A. McHughen, 2002. Production of fertile transgenic lentil (Lens culinaris Medik.) plants using particle bombardment. In Vitro Cell Dev Biol Plant 38: 316–324.

    Article  CAS  Google Scholar 

  • Gutierrez, M.V., M.C.V. Patto, T. Huguet, J.I. Cubero, M.T. Moreno & A.M. Torres, 2005. Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theor Appl Genet 110: 1210–1217.

    Article  CAS  PubMed  Google Scholar 

  • Hall, K.J., J.S. Parker & T.H.N. Ellis, 1997a. The relationship between genetic and cytogenetic maps of pea. I. Standard and translocation karyotypes. Genome 40: 744–754.

    CAS  Google Scholar 

  • Hall, K.J., J.S. Parker, T.H.N. Ellis, L. Turner, M.R. Knox, J.M.I. Hofer, J. Lu, C. Ferrandiz, P.J. Hunter, J.D. Taylor & K. Baird, 1997b. The relationship between genetic and cytogenetic maps of pea. II. Physical maps of linkage mapping populations. Genome 40: 755–769.

    CAS  Google Scholar 

  • Hamwieh, A., W. Choumane, S.M. Udapa, F. Dreyer, C. Jung & M. Baum, 2004. Development of microsatellite markers for the genus Lens. Final Abstracts Guide, Plant and Animal Genome XII Conference, p. 135.

  • Hamwieh, A., S.M. Udapa, W. Choumane, A. Sarker, F. Dreyer, C. Jung & M. Baum, 2005. A genetic linkage map of lentil based on microsatellite and AFLP markers and localization of Fusarium vascular wilt resistance. Theor Appl Genet 110: 669–677.

    Article  CAS  PubMed  Google Scholar 

  • Havey, M.J. & F.J. Muehlbauer, 1989. Linkages between restriction fragment length, isozyme, and morphological markers in lentil. Theor Appl Genet 77: 395–401.

    Article  CAS  Google Scholar 

  • Henikoff, S., B.J. Till & L. Comai, 2004. Tilling. Traditional mutagenesis meets functional genomics. Plant Physiol 135: 630–636.

    Article  CAS  PubMed  Google Scholar 

  • Hobson, K., R. Armstrong, D. Connor, M. Nicolas & M. Materne, 2003. Genetic variation in tolerance to high concentrations of soil boron exists in lentil germplasm. In: Solutions for a better environment. Proceedings of the 11th Australian Agronomy Conference, Victoria, Australia.

  • ICARDA, 2004. Celebration as Bangladesh produces more lentil. Caravan 20/21: 11–12.

    Google Scholar 

  • Jana, M.K. & A.E. Slinkard, 1979. Screening for salt tolerance in lentils. LENS Newslett 6: 25–27.

    Google Scholar 

  • Jarvis, P., C. Lister, V. Szabó & C. Dean, 1994. Integration of CAPS markers into the RFLP map generated using recombinant inbred lines of Arabidopsis thaliana. Plant Mol Biol 24: 685–687.

    Article  CAS  PubMed  Google Scholar 

  • Jenczewski, E., M. Gherardi, I. Bonnin, J.M. Prosperi, I. Olivieri & T. Huguet, 1997. Insight on segregation distortions in two intraspecific crosses between annual species of Medicago (Leguminosae). Theor Appl Genet 94: 682–691.

    Article  Google Scholar 

  • Johansen, C., B. Baldev, J.B. Brouwer, W. Erskine, W.A. Jermyn, L. Li-Juan, B.A. Malik, A. Ahad Miah & S.N. Silim. 1994. Biotic and abiotic stresses constraining productivity of cool season food legumes in Asia, Africa and Oceania. In: F.J. Muehlbauer & K.J. Kaiser (Eds.), Expanding the Production and Use of Cool Season Food Legumes, pp. 175–194. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Kahraman, A., I. Kusmenoglu, N. Aydin, A. Aydogan, W. Erskine & F.J. Muehlbauer, 2004a. Genetics of winter hardiness in 10 lentil recombinant inbred line populations. Crop Sci 44: 5–12.

    Article  Google Scholar 

  • Kahraman, A., I. Kusmenoglu, N. Aydin, A. Aydogan, W. Erskine & F.J. Muehlbauer, 2004b. QTL mapping of winter hardiness genes in lentil. Crop Sci 44: 13–22.

    Article  CAS  Google Scholar 

  • Kanazin, V., L.F. Marek & R.C. Shoemaker, 1996. Resistance gene analogs are conserved and clustered in soybean. PNAS USA 93: 11746–11750.

    Article  CAS  PubMed  Google Scholar 

  • Katerji, N., J.W. van hoorn, A. Hamdy, M. Mastrorilli, T. Oweis & W. Erskine, 2001. Salinity effect on crop development and yield analysis of salt tolerance according to several classification methods. Agric Water Manage 62: 37–66.

    Article  Google Scholar 

  • Katerji, N., J.W. van hoorn, A. Hamdy & M. Mastrorilli, 2003. Salinity effect on crop development and yield analysis of salt tolerance according to several classification methods. Agric Water Manage 62: 37–66.

    Article  Google Scholar 

  • Kempin, S.A., S.J. Liljegren, L.M. Block, S.D. Rounsley, M.F. Yanofsky & E. Lam, 1997. Targeted disruption in Arabidopsis. Nature 389: 802–803.

    Article  CAS  PubMed  Google Scholar 

  • Khare, M.N., 1981. Diseases of lentil. In: C. Webb & G. Hawtin (Eds.), Lentils, p. 216. Wallingford, United Kingdom, CAB International.

    Google Scholar 

  • Kraft, J.M., M.P. Haware & M.M. Hussein, 1988. Root rot and wilt diseases of food legumes. In: R.J. Summerfield (Ed.), World Crops: Cool Season Food legumes, pp. 565–575. Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  • Kraft, J.M., M.P. Haware, R.M. Jimenez-Diaz, B. Bayaa & M. Harrabi, 1994. Screening techniques and sources of resistance to root rots and wilts in cool season food legumes. In: F.J. Muehlbauer & W.J. Kaiser (Eds.), Expanding the Production and use of Cool Season Food Legumes, pp. 268–289. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Krysan, P.J., J.C. Young, P.J. Jester, S. Monson, G. Copenhaver, D. Preuss & M.R. Sussman, 2002. Characterization of T-DNA insertion sites in Arabidopsis thaliana and the implications for saturation mutagenesis. OMICS 6: 163–174.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn, E., 2001. From library screening to microarray technology: Strategies to determine gene expression profiles and to identify differentially regulated genes in plants. Ann Bot 87: 139–155.

    Article  CAS  Google Scholar 

  • Kuster, H., N. Hohnjec, F. Krajinski, F. El Yahyaoui, K. Manthey, J. Gouzy, M. Dondrup, F. Meyer, J. Kalinowski, L. Brechenmacher, D. van Tuinen, V. Gianinazzi-Pearson, A. Puhler, P. Gamas & A. Becker, 2004. Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula. J Biotech 108: 95–113.

    Google Scholar 

  • Ladizinsky G., 1979. The origin of lentil and its wild gene pool. Euphytica 28: 179–187.

    Article  Google Scholar 

  • Ladizinsky, G., 1999. Identification of the lentil’s wild genetic stock. Genet Resour Crop Evol 46: 115–118.

    Article  Google Scholar 

  • Ladizinsky, G., D. Cohen & F.J. Muehlbauer, 1985. Hybridization in the genus Lens by means of embryo culture. Theor Appl Genet 70: 97–101.

    Article  Google Scholar 

  • Laucou, V., K. Haurogné, N. Ellis & C. Rameau, 1998. Genetic mapping in pea. 1. RAPD-based genetic linkage map of Pisum sativum. Theor Appl Genet 97: 905–915.

    Article  CAS  Google Scholar 

  • Leister, D., A. Ballvora, F. Salamini & C. Gebhardt, 1996. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet 14: 421–429.

    Article  CAS  PubMed  Google Scholar 

  • Liang, P. & A.B. Pardee, 1992. Differential display of eukaryotic messenger-RNA by means of the polymerase chain-reaction. Science 257: 967–971.

    CAS  PubMed  Google Scholar 

  • Lorieux, M., B. Goffinet, X. Perrier, D. Gonzalez de Leon & C. Lanaud, 1995. Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross populations. Theor Appl Genet 90: 73–80.

    Google Scholar 

  • Maguire, T.L., S. Grimmond, A. Forrest, I. Iturbe-Ormaetxe, K. Meksem & P.M. Gresshoff, 2002. Tissue-specific gene expression in soybean (Glycine max) detected by cDNA microarray analysis, J Plant Physiol 159: 1361–1374.

    Google Scholar 

  • Mahmoudian, M., M. Yuecel & H.A. Oektem, 2002. Transformation of lentil (Lens culinaris M.) cotyledonary nodes by vacuum infiltration of Agrobacterium tumafaciens. Plant Mol Biol Reptr 20: 251–257.

    Article  Google Scholar 

  • McCallum, C.M., L. Comai, E.A. Greene & S. Henikoff, 2000. Targeted screening for induced mutations. Nat Biotech 18: 455–457.

    Article  CAS  Google Scholar 

  • Michelmore, R.W., I. Paran & R.B. Kesseli, 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. PNAS USA 88: 9828–9832.

    CAS  PubMed  Google Scholar 

  • Mitra, R.M., S.L. Shaw & S.R. Long, 2004. Six nonnodulating plant mutants defective for Nod factor-induced transcriptional changes associated with the legume-rhizobia symbiosis. PNAS 101: 10217–10222.

    Article  CAS  PubMed  Google Scholar 

  • Monti, L, A.J. Biddle, M.T. Moreno & P. Plancquaert, 1994. Biotic and abiotic stresses of pulse crops in Europe. In: F.J. Muehlbauer & K.J. Kaiser (Eds.), Expanding the Production and Use of Cool Season Food Legumes, pp. 204–218. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Moody, D.E., Z. Zou & L. McIntyre, 2002. Cross-species hybridization of pig RNA to human nylon microarrays. BMC Genomics 3: 27.

    Article  CAS  PubMed  Google Scholar 

  • Muehlbauer, F.J. & K.E. McPhee, 2002. Future of North American lentil production. In: J.B. Brouwer (Ed.), Proceedings of Lentil Focus 2002 meeting Horsham, Victoria, Australia.

  • Muehlbauer, F.J., N.F. Weeden & D.L. Hoffman, 1989. Inheritance and linkage relationships of morphological and isozyme loci in lentil (Lens Miller). J Hered 80: 298–303.

    Google Scholar 

  • Nacry, P., C. Camilleri, B. Courtial, M. Caboche & D. Bouchez, 1998. Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis. Genetics 149: 641–650.

    CAS  PubMed  Google Scholar 

  • Neale, D.B. & O. Savolainen, 2004. Association genetics of complex traits in conifers. Trends Plant Sci 325–330.

  • Negussie, T., Z.A. Pretorius & C.M. Bender, 1998. Components of rust resistance in lentil. Euphytica 142: 55–64.

    Article  Google Scholar 

  • Nguyen, T.T., P.W.J. Taylor, J.B. Brouwer, E.C.K Pang & R. Ford, 2001. A novel source of resistance in lentil (Lens culinaris ssp. culinaris) to ascochyta blight caused by A. lentis. Aust Plant Path 30: 211–215.

    Article  Google Scholar 

  • Paterson, A.H., S.D. Tanksley & M.E. Sorrells, 1991. DNA markers in plant improvement. Adv Agron 46: 39–90.

    Article  CAS  Google Scholar 

  • Paran, I. & R.W. Michelmore, 1993. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85: 985–993.

    Article  CAS  Google Scholar 

  • Patil, P.B., P.L. Vrinten, G.J. Scoles & A.E. Slinkard, 1995. Variation in the ribosomal RNA units of the genera Lens and Cicer. Euphytica 83: 33–42.

    Article  CAS  Google Scholar 

  • Perry, J.A., T.L. Wang, T.J. Welham, S. Gardner, J.M. Pike, S. Yoshida & M. Parniske, 2003. A tilling reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol 131: 866–871.

    Article  CAS  PubMed  Google Scholar 

  • Popelka, J.C., N. Terryn & T.J.V. Higgins, 2004. Gene technology for grain legumes: Can it contribute to the food challenge in developing countries? Plant Sci 167: 195–206.

    Article  CAS  Google Scholar 

  • Pritchard, J.K., M. Stephens & P. Donnelly, 2000. Association mapping in structured populations. Am J Hum Genet 67: 170–181.

    Article  CAS  PubMed  Google Scholar 

  • Quillet, M.C., N. Madjidian, Y. Griveau, H. Serieys, M. Tersac, M. Lorieux & A. Bervillé, 1995. Mapping genetic factors controlling pollen viability in an interspecific cross in Helianthus sect. Helianthus. Theor Appl Genet 91: 1195–1202.

    Article  CAS  Google Scholar 

  • Rai, R., S.K.T. Nasar, S.J. Singh & V. Prasad, 1985. Interactions between Rhizobium strains and lentil (Lens culinaris Linn.) genotypes under salt stress. J Agric Sci 104: 199–205.

    Article  Google Scholar 

  • Rai, R. & R.P. Singh, 1999. Effect of salt stress on interaction between lentil (Lens culinaris) genotypes and Rhizobium spp. Strains: Symbiotic N2 fixation in normal and sodic soils. Biol Fert Soils 29: 187–195.

    Article  CAS  Google Scholar 

  • Rubeena, R. Ford & P.W.J. Taylor, 2003. Construction of an intraspecific linkage map of lentil (Lens culinaris ssp. culinaris). Theor Appl Genet 107: 910–916.

    Article  CAS  PubMed  Google Scholar 

  • Sarker, R.H., A. Biswas, B.M. Mustafa, S. Mahbub & M.I. Hoque, 2003. Agrobacterium-mediated transformation of lentil (Lens culinaris Medik.). Plant Tissue Cult 13: 1–12.

    Google Scholar 

  • Saxena, M.C., 1993. The challenge of developing biotic and abiotic stress resistance in cool-season food legumes. In: K.B. Singh & M.C. Saxena (Eds.), Breeding for Stress Tolerance in Cool-Season Food Legumes, pp. 3–14. Wiley, Chichester, United Kingdom.

    Google Scholar 

  • Schena, M., D. Shalon, R. Heller, A. Chai, P.O. Brown & R.W. Davis, 1996. Parallel human genome analysis: Microarray-based expression monitoring of 1000 genes. PNAS USA 93: 10614–10619.

    Article  CAS  PubMed  Google Scholar 

  • Sha, Y., S. Li, Z. Pei, L. Luo, Y. Tian & C. He, 2004. Generation and flanking sequence analysis of a rice T-DNA tagged population. Theor Appl Genet 108: 306–314.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, S.K., M.R. Knox & T.H.N. Ellis, 1996. AFLP analysis of the diversity and phylogeny of Lens and its comparison with RAPD analysis. Theor Appl Genet 93: 751–758.

    Article  CAS  Google Scholar 

  • Simon, C.J. & R.M. Hannan, 1995. Development and use of core subsets of cool-season food legume germplasm collections. Hort Sci 30: 907.

    Google Scholar 

  • Simon, C.J. & F.J. Muehlbauer, 1997. Construction of a chickpea linkage map and its comparison with maps of pea and lentil. J Hered 88: 115.

    CAS  Google Scholar 

  • Singh, K.B. & M.C. Saxena (Eds.), 1993. Breeding for Stress Tolerance in Cool-Season Food Legumes, pp. 474. Wiley, Chichester, United Kingdom.

    Google Scholar 

  • Slinkard, A.E., G. Bascur & G. Hernandez-Bravo. 1994. Biotic and abiotic stresses of cool season food legumes in the western hemisphere. In: F.J. Muehlbauer & K.J. Kaiser (Eds.), Expanding the Production and Use of Cool Season Food Legumes, pp. 195–203. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Spaeth, S.C., & F.J. Muehlbauer, 1991. Registration of three germplasms of winter hardy lentil. Crop Sci 31: 1395.

    Article  Google Scholar 

  • Tadmor, Y., D. Zamir & G. Ladizinsky, 1987. Genetic mapping of an ancient translocation in the genus Lens. Theor Appl Genet 73: 883–892.

    Article  Google Scholar 

  • Tahir, M. & F.J. Muehlbauer, 1994. Gene mapping in lentil with recombinant inbred lines. J Hered 85: 306–310.

    CAS  Google Scholar 

  • Tahir, M, C.J. Simon & F.J. Muehlbauer, 1993. Gene map of lentil: A review. LENS Newslett 20: 3–10.

    Google Scholar 

  • Tanksley, S.D., M.W. Ganal, J.P. Prince, M.C. de Vicente, M.W. Bonierbale, P. Broun, T.M. Fulton, J.J. Giovannoni, S. Grandillo, G.B. Martin, R. Messeguer, J.C. Miller, L. Miller, A.H. Paterson, O. Pineda, M.S. Röder, R.A. Wing, W. Wu & N.D. Young, 1992. High density molecular linkage maps of the tomato and potato genomes. Genetics 132: 1141–1160.

    CAS  PubMed  Google Scholar 

  • Tar’an, B., L. Buchwaldt, A. Tullu, S. Banniza, T.D. Warkentin & A. Vandenberg, 2003. Using molecular markers to pyramid genes for resistance to ascochyta blight and anthracnose in lentil (Lens culinaris Medik.). Euphytica 134: 223–230.

    Article  CAS  Google Scholar 

  • Thibaud-Nissen, F., R.T. Shealy, A. Khanna & L.O. Vodkin, 2003. Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol 132: 118–136.

    Article  CAS  PubMed  Google Scholar 

  • Thornsbury, J.M., M.M. Goodman, J. Doebley, S. Kresovich, D. Nielsen & E.S. Buckler, 2001. Dwarf polymorphisms associate with variation in flowering time. Nat Genet 28: 286–289.

    Article  CAS  Google Scholar 

  • Tissier, A.F., S. Marillonnet, V. Klimyuk, K. Patel, M.A. Torres, G. Murphy & J.D.G. Jones, 1999. Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: A tool for functional genomics. Plant Cell 11: 1841–1852.

    Article  CAS  PubMed  Google Scholar 

  • Tullu, A., T. Buchwaldt, T. Warkentin, B. Taran & A. Vandenberg, 2003. Genetics of resistance to anthracnose and identification of AFLP and RAPD markers linked to the resistance gene in PI 320937 germplasm of lentil (Lens culinaris Medikus). Theor Appl Genet 106: 428–434.

    CAS  PubMed  Google Scholar 

  • Turner, N.C., G.C. Wright & K.H.M. Siddique, 2001. Adaptation of grain legumes (Pulses) to water-limited environments. Adv Agron 71: 193–231.

    Google Scholar 

  • Vaillancourt, R.E. & A.E. Slinkard, 1993. Linkage of morphological and isozyme loci in lentil, Lens culinaris L. Can J Plant Sci 73: 917–926.

    CAS  Google Scholar 

  • VandenBosch, K.A. & G. Stacey, 2003. Summaries of Legume Genomics Projects from around the Globe. Community Resources for Crops and Models. Plant Physiol 131: 840–865.

    Article  CAS  Google Scholar 

  • Vodkin, L.O., A. Khanna, R. Shealy, S.J. Clough, D.O. Gonzalez, G. Zabala, F. Thibaud-Nissen, M. Sidarous, M.V. Srömvik, E. Shoop, C. Schmidt, E. Retzel, J. Erpelding, R. Shoemaker, A.M. Rodriguez-Huete, J.C. Polacco, V. Coryell, P. Keim, G. Gong, L. Liu, J. Pardinas & P. Schweitzer, 2004. Microarrays for global expression constructed with a low redundancy set of 27,500 sequenced cDNAs representing an array of developmental stages and physiological conditions of the soybean plant. http://www.biomedcentral.com/1471-2164/5/73.

  • Wang, Z., T.P. Dooley, E.V. Curto, R.L. Davis & J.L. VandeBerg, 2004. Cross-species application of cDNA microarrays to profile gene expression using UV-induced melanoma in Monodelphis domestica as the model system. Genomics 83: 588–599.

    Article  CAS  PubMed  Google Scholar 

  • Warkentin, T. & A. McHughen, 1991. Crown gall transformation of lentil (Lens culinaris Medik.) with virulent strains of Agrobacterium tumefaciens. Plant Cell Rep 10: 489–493.

    Article  Google Scholar 

  • Warkentin, T. & A. McHughen, 1992. Agrobacterium tumafaciens-mediated beta-glucuronidase (GUS) gene expression in lentil (Lens culinaris Medik.) tissues. Plant Cell Rep 11: 274–278.

    Article  CAS  Google Scholar 

  • Weeden, N.F., F.J. Muehlbauer & G. Ladizinsky, 1992. Extensive conservation of linkage relationships between pea and lentil genetic maps. J Hered 83: 123–129.

    Google Scholar 

  • Winter, P., A.M. Benko-Iseppon, B. Hüttel, M. Ratnaparkhe, A. Tullu, G. Sonnante, T. Pfaff, M. Tekeoglu, D. Santra, V.J. Sant, P.N. Rajesh, G. Kahl & F.J. Muehlbauer, 2000. A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum×C. reticulatum cross: Localization of resistance genes for fusarium wilt races 4 and 5. Theor Appl Genet 101: 1155–1163.

    Article  CAS  Google Scholar 

  • Xu, Y., L. Zhu, J Xiao, N. Huang & S.R. McCouch, 1997. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet 253: 535–545.

    Article  CAS  PubMed  Google Scholar 

  • Yaish, M.W.F., L.E. Sáenz de Miera & M. Pérez de la Vega, 2004. Isolation of a family of resistance gene analogue sequences of the nucleotide binding site (NBS) type from Lens species. Genome 47: 650–659.

    Article  CAS  PubMed  Google Scholar 

  • Yau, S.K. & W. Erskine, 2000. Diversity of boron-toxicity tolerance in lentil growth and yield. Genet Res Crop Evol 47: 55–61.

    Article  Google Scholar 

  • Young, N.D., 1994. Constructing a plant genetic linkage map with DNA markers. In: R.L. Phillips & I.K. Vasil (Eds.), DNA-Based Markers in Plants, pp. 39–57. Kluwer Academic, Dordrecht, Boston.

    Google Scholar 

  • Yu, J., S. Hu, J. Wang, G.K.-S. Wong, S. Li, B. Liu, Y. Deng, L. Dai, Y. Zhou & X. Zhang, 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. Indica). Science 296: 79–92.

    Article  CAS  PubMed  Google Scholar 

  • Zamir, D. & G. Ladizinsky, 1984. Genetics of allozyme variants and linkage groups in lentil. Euphytica 33: 329–336.

    Article  CAS  Google Scholar 

  • Závodná, M., J. Kraic, G. Paglia, E. Gregova & M. Morgante, 2000. Differentiation between closely related lentil (Lens culinaris Medik.) cultivars using DNA markers. Seed Sci Tech 28: 217–219.

    Google Scholar 

  • Zhu, Y.L., Q.J. Song, D.L. Hyten, C.P. Van Tassell, L.K. Matukumalli, D.R. Grimm, S.M. Hyatt, E.W. Fickus, N.D. Young & P.B. Cregan, 2003. Single-nucleotide polymorphisms in soybeam. Genetics 163: 1123–1134.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick J. Muehlbauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muehlbauer, F.J., Cho, S., Sarker, A. et al. Application of biotechnology in breeding lentil for resistance to biotic and abiotic stress. Euphytica 147, 149–165 (2006). https://doi.org/10.1007/s10681-006-7108-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-006-7108-0

Key Words

Navigation