, Volume 77, Issue 3, pp 381-397,
Open Access This content is freely available online to anyone, anywhere at any time.
Date: 25 Sep 2012

Numbers and Propositions Versus Nominalists: Yellow Cards for Salmon & Soames

Abstract

Salmon and Soames argue against nominalism about numbers and sentence types. They employ (respectively) higher-order and first-order logic to model certain natural language inferences and claim that the natural language conclusions carry commitment to abstract objects, partially because their renderings in those formal systems seem to do that. I argue that this strategy fails because the nominalist can accept those natural language consequences, provide them with plausible and non-committing truth conditions and account for the inferences made without committing themselves to abstract objects. I sketch a modal account of higher-order quantification, on which instead of ranging over sets, higher order quantifiers are used to make (logical) possibility claims about which predicate tokens can be introduced. This approach provides an alternative account of truth conditions for natural language sentences which seem to employ higher-order quantification, thus allowing the nominalist to evade Salmon’s argument. I also show how the nominalist can account for the occurrence of apparently singular abstract terms in certain true statements. I argue that the nominalist can achieve this by, first, dividing singular terms into real singular terms (referring to concrete objects) and only apparent singular terms (called onomatoids), introduced for the sake of brevity and simplicity, and then providing an account of nominalistically acceptable truth conditions of sentences containing onomatoids. I develop such an account in terms of modally interpreted abstraction principles and argue that applying this strategy to Soames’s argument allows the nominalists to defend themselves.