Skip to main content

Advertisement

Log in

The role of urban green infrastructure in mitigating land surface temperature in Bobo-Dioulasso, Burkina Faso

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Green infrastructure in developed countries has been used as a climate change adaptation strategy to lower increased temperatures in cities. But, the use of green infrastructure to provide ecosystem services and increase resilience is largely overlooked in climate change and urban policies in the developing world. This study analyzed the role of urbanization and green infrastructure on urban surface temperatures in Bobo-Dioulasso, Burkina Faso, in sub-Saharan Africa. We use available geospatial data and techniques to spatially and temporally explore urbanization and land surface temperatures (LSTs) over 20 years. The effect of specific green infrastructure areas in the city on LSTs was also analyzed. Results show increased urbanization rates and increased temperature trends across time and space. But, LST in green infrastructure areas was indeed lower than adjacent impervious, urbanized areas. Seasonal phenological differences due to rainfall patterns, available planting space, and site limitations should be accounted for to maximize temperature reduction benefits. We discuss an approach on how study findings and urban and peri-urban agriculture and forestry are being used for policy uptake and formulation in the field of climate change, food security, and urbanization by the municipal government in this city in Burkina Faso.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amiri, R., Wen, Q. H., Alimohammadi, A., & Alavipanah, S. K. (2009). Spatial-temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sensing of Environment, 113(12), 2606–2617.

    Article  Google Scholar 

  • Artis, D. A., & Carnahan, W. H. (1982). Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment, 12, 313–329.

    Article  Google Scholar 

  • Becker, F., & Li, Z. L. (1990). Temperature independent spectral indices in thermal infrared bands. Remote Sensing of the Environment, 32, 17–33.

    Article  Google Scholar 

  • Bele, M. Y., Sonwa, D. J., & Tiani, A. M. (2014). Local communities vulnerability to climate change and adaptation strategies in Bukavu in DR Congo. The Journal of Environment and Development, 23(3), 331–357.

    Article  Google Scholar 

  • Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147–155.

    Article  Google Scholar 

  • Brown, R. D., & Gillespie, T. J. (1995). Microclimate landscape design: Creating thermal comfort and energy efficiency. Chichester: Wiley.

    Google Scholar 

  • Cao, X., Onishi, A., Chen, J., & Imura, H. (2010). Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landscape and Urban Planning, 96(4), 224–231.

    Article  Google Scholar 

  • Carlson, T. N., & Ripley, D. A. (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62(3), 241–252.

    Article  Google Scholar 

  • Cavan, G., Lindley, S., Jalayer, F., Yeshitela, K., Pauleit, S., Renner, F., et al. (2014). Urban morphological determinants of temperature regulating ecosystem services in two African cities. Ecological Indicators, 42, 43–57.

    Article  Google Scholar 

  • Chander, G., Markham, B., & Helder, D. (2009). Summary of current radiometric calibration coefficients for Landsat MSS. TM. ETM+ and EO-1 ALI sensors. Remote Sensing of the Environment, 113, 893–903.

    Article  Google Scholar 

  • Changnon, S. A., Kunkel, K. E., & Reinke, B. C. (1996). Impacts and responses to the 1995 heat wave: A call to action. Bulletin of the American Meteorological Society, 77, 1497–1505.

    Article  Google Scholar 

  • Chen, X. Z., Su, Y. X., Li, D., Huang, G. Q., Chen, W. Q., & Chen, S. S. (2012). Study on the cooling effects of urban parks on surrounding environments using Landsat TM data: A case study in Guangzhou, southern China. International Journal of Remote Sensing, 33(18), 5889–5914.

    Article  Google Scholar 

  • Chen, Y., Wang, J., & Li, X. (2002). A study on urban thermal field in summer based on satellite remote sensing. Remote Sensing for Land and Resources, 4, 55–59.

    Google Scholar 

  • Cheng, K. S., Su, Y. F., Kuo, F. T., Hung, J. L., & Chiang, J. L. (2008). Assessing the effect of land cover changes on air temperature using remote sensing images: A pilot study in northern Taiwan. Landscape and Urban Planning, 86, 85–96.

    Article  Google Scholar 

  • Cilliers, S., Cilliers, J., Lubbe, R., & Siebert, S. (2012). Ecosystem services of urban green spaces in African countries—Perspectives and challenges. Urban Ecosystems, 16, 681–702.

    Article  Google Scholar 

  • Conway, D., Mould, C., & Bewket, W. (2004). Over one century of rainfall and temperature observations in Addis Ababa, Ethiopia. International Journal of Climatology, 24(1), 77–91.

    Article  Google Scholar 

  • Elhag, M. (2014). Sensitivity analysis assessment of remotely based vegetation indices to improve water resources management. Environment, Development and Sustainability, 16, 1209–1222.

    Article  Google Scholar 

  • Escobedo, F., Kroeger, T., & Wagner, J. (2011). Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. Environmental Pollution, 159, 2078–2087.

    Article  CAS  Google Scholar 

  • Fourchard, L. (2003). Propriétaires et commerçants Africains à Ouagadougou et à Bobo-Dioulasso (Haute-Volta), fin 19ème siècle–1960. The Journal of African History, 44, 433–461.

    Article  Google Scholar 

  • Gallo, K. P., & Owen, T. W. (1998a). Assessment of urban heat island: A multisensor perspective for the Dallas-Ft. Worth USA region. Geocarto International, 13, 35–41.

    Article  Google Scholar 

  • Gallo, K. P., & Owen, T. W. (1998b). Satellite-based adjustments for the urban heat island temperature bias. Journal of Applied Meteorology, 38, 806–813.

    Article  Google Scholar 

  • Goldreich, Y. (1992). Urban climate studies in Johannesburg. A sub-tropical city located on a ridge: A review. Atmospheric Environment. Part B. Urban Atmosphere, 26(3), 407–420.

    Article  Google Scholar 

  • Grau, H. R., Hernandez, M. E., Gutierrez, J., Gasparri, N. I., Casavecchia, M. C., Flores-Ivaldi, E. E., & Paolini, L. (2008). A peri-urban neotropical forest transition and its consequences for environmental services. Ecology and Society, 13(1), 35.

    Google Scholar 

  • Hernández, J. L., Hwang, S., Escobedo, F., Davis, A. H., & Jones, J. W. (2012). Land use change in central Florida and sensitivity analysis based on agriculture to urban extreme conversion. Weather, Climate and Society, 4(3), 200–211.

    Article  Google Scholar 

  • Hu, Y., & Jia, G. (2010). Influence of land use change on urban heat island derived from multi-sensor data. International Journal of Climatology, 9, 1382–1395.

    Google Scholar 

  • ILWIS Open 3.8.0.1 User Guide. (2011). © 52North Gmbh. (http://52north.org/communities/ilwis/ilwis-userguide)

  • IGB; Institut Géographique du Burkina. (2002). Système National d’Information sur les Sciences de la Terre. Aires classes couvertures. http://www.bumigeb.bf/snist/propos/donnees/topographie/aires_classees.htm

  • INSD; Institut National de la Statistique et de la Démographie. (2007). Resultants preliminaires du recensement général de la population et de l’habitation (RGPH) de 2006. Burkina Faso. 51 p.

  • Jonsson, P. (2004). Vegetation as an urban climate control in the subtropical city of Gaborone. Botswana. International Journal of Climatology, 24, 1307–1322.

    Article  Google Scholar 

  • Laaidi, K., Zeghnoun, A., Dousset, B., Bretin, P., Vandentorren, S., Giraudet, E., & Beaudeau, P. (2012). The impact of heat islands on mortality in Paris during the August 2003 heat wave. Environmental Health Perspectives, 120(2), 254–259.

    Article  Google Scholar 

  • Landsat Project Science Office. (2002). Landsat 7 Science data user’s handbook. Greenbelt: Goddard Space Flight Center. MD.

    Google Scholar 

  • Landsberg, H. E. (1981). The urban climate. Maryland: Academic Press.

    Google Scholar 

  • Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., et al. (2013). Satellite derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131, 14–37.

    Article  Google Scholar 

  • Lin, B. S., & Lin, Y. J. (2010). Cooling effect of shade trees with different characteristics in a subtropical urban park. HortScience, 45(1), 83–86.

    Google Scholar 

  • Madlener, R., & Sunak, Y. (2011). Impacts of urbanization on urban structures and energy demand: What can we learn for urban energy planning and urbanization management? Sustainable Cities and Society, 1, 45–53.

    Article  Google Scholar 

  • Masek, J. G., Lindsay, F. E., & Goward, S. N. (2000). Dynamics of urban growth in the Washington DC metropolitan area, 1973–1996, from Landsat observations. International Journal of Remote Sensing, 21, 3473–3486.

    Article  Google Scholar 

  • Nieuwolt, S. (1966). The urban microclimate of Singapore. The Journal of Tropical Geography, 22, 30–37.

    Google Scholar 

  • Norton, B. A., Coutts, A. M., Livesley, S. J., Harris, R. J., Hunter, A. M., & Williams, N. S. G. (2015). Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and Urban Planning, 134, 127–138.

    Article  Google Scholar 

  • Oliveira, S., Andrade, H., & Vaz, T. (2011). The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Building and Environment, 46(11), 2186–2194.

    Article  Google Scholar 

  • Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11, 1633–1644.

    Article  Google Scholar 

  • Rosenfeld, A. H., Akbari, H., & Romm, J. J. (1998). Cool communities: Strategies for heat island mitigation and smog reduction. Energy and Buildings, 28, 51–62.

    Article  Google Scholar 

  • Schäffler, A., & Swilling, M. (2013). Valuing green infrastructure in an urban environment under pressure: The Johannesburg case. Ecological Economics, 86, 246–257.

    Article  Google Scholar 

  • Shashua-Bar, L., Pearlmutter, D., & Erell, E. (2009). The cooling efficiency of urban landscape strategies in a hot dry climate. Landscape and Urban Planning, 92(3–4), 179–186.

    Article  Google Scholar 

  • Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, P. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90, 434–440.

    Article  Google Scholar 

  • Streutker, D. R. (2003). Satellite-measured growth of the urban heat island of Houston. Texas. Remote Sensing of Environment, 85, 282–289.

    Article  Google Scholar 

  • Tosam, M. J., & Mbih, R. A. (2014). Climate change, health, and sustainable development in Africa. Environment, Development and Sustainability.,. doi:10.1007/s10668-014-9575-0.

    Google Scholar 

  • UN-Habitat. (2014). The State of African Cities 2014. United Nation Habitat. HS Number 004/14E. Regional State of the Cities Reports. 200p.

  • Valor, E., & Caselles, V. (1996). Mapping land surface emissivity from NDVI: Application to European, African and South American areas. Remote Sensing of Environment, 57, 167–184.

    Article  Google Scholar 

  • Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86, 370–384.

    Article  Google Scholar 

  • Wang, J., Rich, P. M., Price, K. P., & Kettle, W. D. (2004). Relations between NDVI and tree productivity in the central Great Plains. International Journal of Remote Sensing, 25(16), 3127–3138.

    Article  Google Scholar 

  • Weng, Q. (2001). A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in Zhujiang Delta, China. International Journal of Remote Sensing, 22(10), 1999–2014.

    Google Scholar 

  • Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89, 467–483.

    Article  Google Scholar 

  • Xu, H.-Q., & Chen, B.-Q. (2004). Remote sensing of the urban heat island and its changes in Xiamen City of SE China. Journal of Environmental Sciences, 16, 276–281.

    Google Scholar 

  • Yuan, F., & Bauer, M. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 106, 375–386.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Narcisse Gahi, Institute d’application et de vulgarisation en sciences- IAVS in Ouagadougou and Hamidou Baguian, Municipalité de Bobo-Dioulasso for support with data. This study was coordinated by the International Network of Resource Centres on Urban Agriculture and Food security (RUAF) and funded by UN-Habitat Cities, Climate Change Initiative, the UK Department for International Development (DFID), and the Netherlands Directorate-General for International Cooperation (DGIS) for the benefit of developing countries. However, views expressed and information are not necessarily those of, or endorsed by UN Habitat, DFID, DGIS, or the entities managing the delivery of the Climate and Development Knowledge Network, which can accept no responsibility or liability for such views, completeness, or accuracy of the information or for any reliance placed on them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Escobedo.

Appendix

Appendix

See Table 6 and Fig. 8.

Table 6 Climate data for Bobo-Dioulasso, Burkina Faso, showing fluctuations in monthly mean temperature (temp.) and precipitation as well as the monthly average maximum (max.), minimum (min.), and mean
Fig. 8
figure 8figure 8

Land surface temperature (LST) images for Bobo-Dioulasso, Burkina Faso, with corresponding date of acquisition for 12 of the total 16 images used (day/month/year)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Leo, N., Escobedo, F.J. & Dubbeling, M. The role of urban green infrastructure in mitigating land surface temperature in Bobo-Dioulasso, Burkina Faso. Environ Dev Sustain 18, 373–392 (2016). https://doi.org/10.1007/s10668-015-9653-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-015-9653-y

Keywords

Navigation