Skip to main content

Advertisement

Log in

Comparative Assessment of Climate Change Scenarios Based on Aquatic Food Web Modeling

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

In the years 2004 and 2005, we collected samples of phytoplankton, zooplankton, and macroinvertebrates in an artificial small pond in Budapest (Hungary). We set up a simulation model predicting the abundances of the cyclopoids, Eudiaptomus zachariasi, and Ischnura pumilio by considering only temperature and the abundance of population of the previous day. Phytoplankton abundance was simulated by considering not only temperature but the abundances of the three mentioned groups. When we ran the model with the data series of internationally accepted climate change scenarios, the different outcomes were discussed. Comparative assessment of the alternative climate change scenarios was also carried out with statistical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Arashkevich, E., Wassmann, P., Pasternak, A., & Riser, C. W. (2002). Seasonal and spatial changes in biomass, structure, and development progress of the zooplankton community in the Barents Sea. Journal of Marine Systems, 38, 125–145. DOI 10.1016/S0924-7963(02)00173-2.

    Article  Google Scholar 

  2. Baranovic, A., Solic, M., Vucetic, T., & Krstulovic, N. (1993). Temporal fluctuations of zooplankton and bacteria in the middle Adriatic Sea. Marine Ecology Progress Series, 92, 65–75. DOI 10.3354/meps092065.

    Article  Google Scholar 

  3. Barrow, E. M., Hulme, M., Semenov, M. A., & Brooks, R. J. (2000). Climate change scenarios. In T. E. Downing, P. A. Harrison, R. E. Butterfield, & K. G. Lonsdale (Eds.), Climate change, climatic variability and agriculture in Europe: An integrated assessment (pp. 11–27). Oxford, UK: University of Oxford.

    Google Scholar 

  4. Bernot, R. J., Dodds, W. K., Quist, M. C., & Guy, C. S. (2004). Spatial and temporal variability of zooplankton in a great plains reservoir. Hydrobiologia, 525, 101–112. DOI 10.1023/B:HYDR.0000038857.19342.fd.

    Article  Google Scholar 

  5. Carter, T. R., Parry, M. L., Harasawa, H., & Nishioka, S. (1994). IPCC technical guidelines for assessing climate change impacts and adaptation p. 59. London: UCL/CGER.

    Google Scholar 

  6. Christensen, J. H. (2005). Prediction of regional scenarios and uncertainties for defining European climate change risks and effects. Final Report. p. 269. Copenhagen: DMI.

    Google Scholar 

  7. Christoffersen, K., Andersen, N., Sondergaard, M., & Liboriussen, L. (2006). Implications of climate-enforced temperature increases on freshwater pico- and nanoplankton populations studied in artificial ponds during 16 months. Hydrobiologia, 560, 259–266. DOI 10.1007/s10750-005-12212.

    Article  CAS  Google Scholar 

  8. Christou, E. D. (1998). Interannual variability of copepods in a Mediterranean coastal area (Saronikus Gulf, Aegean Sea). Journal of Marine Systems, 15, 523–532. DOI 10.1016/S0924-7963(97)00080-8.

    Article  Google Scholar 

  9. Christou, E. D., & Moraitou-Apostolopoulou, M. (1995). Metabolism and feeding of mesozooplankton at the eastern Mediterranean (Hellenic coastal waters). Marine Ecology Progress Series, 126, 39–48. DOI 10.3354/meps126039.

    Article  Google Scholar 

  10. Dippner, J. W., Kornilovs, G., & Sidrevics, L. (2000). Long-term variability of mesozooplankton in the Central Baltic Sea. Journal of Marine Systems, 25, 23–31. DOI 10.1016/S0924-7963(00)00006-3.

    Article  Google Scholar 

  11. Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Paleontologia Electronica, 4(1), 9.

    Google Scholar 

  12. Harrison, P. A., Butterfield, R. E., & Downing, T. E. (2000). The CLIVARA project: Study aims and methods. In T. E. Downing, P. A. Harrison, R. E. Butterfield, & K. G. Lonsdale (Eds.), Climate change, climatic variability and agriculture in Europe: An integrated Assessment (pp. 3–10). Oxford, UK: University of Oxford.

    Google Scholar 

  13. Iguchi, N. (2004). Spatial/temporal variations in zooplankton biomass and ecological characteristics of major species in the southern part of the Japan Sea: A review. Progress in Oceanography, 61, 213–225. DOI 10.1016/j.pocean.2004.06.007.

    Article  Google Scholar 

  14. IPCC (2007). Climate change 2007: The physical science basis. Working group I contribution to the fourth assessment Report of the IPCC. Intergovernmental Panel on Climate Change. New York: Cambridge University Press.

    Google Scholar 

  15. Jackson, J. K., & Füreder, L. (2006). Long-term studies of freshwater macroinvertebrates: A review of the frequency, duration and ecological significance. Freshwater Biology, 51, 591–603. DOI 10.1111/j.1365-2427.2006.01503.x.

    Article  Google Scholar 

  16. Jorgensen, S. E. (1994). Fundamentals of ecological modeling (developments in environmental modeling 19) (2nd ed.). Amsterdam: Elsevier.

    Google Scholar 

  17. Jorgensen, E. S., & Padisák, J. (1996). Does the intermediate disturbance hypothesis comply with thermodynamics? Hydrobiologia, 323, 9–21.

    Google Scholar 

  18. Mackas, D. L., & Tsuda, A. (1999). Mesozooplankton in the eastern and western subarctic Pacific: Community structure, seasonal life histories, and interannual variability. Progress in Oceanography, 43, 335–363. DOI 10.1016/S0079-6611(99)00012-9.

    Article  Google Scholar 

  19. Marosi, S., & Somogyi, S. (1990). Magyarország kistájainak katasztere I–II. Budapest: MTA Földrajztudományi Kutatóintézet.

    Google Scholar 

  20. McKee, D., & Atkinson, D. (2000). The influence of climate change scenarios on population of the mayfly Cloeon dipterum. Hydrobiologia, 441, 55–62. DOI 10.1023/A:1017595223819.

    Article  Google Scholar 

  21. Meise-Munns, C., Green, J., Ingham, M., & Mountain, D. (1990). Interannual variability in the copepod populations of George Bank and the western Gulf of Maine. Marine Ecology Progress Series, 65, 225–232. DOI 10.3354/meps065225.

    Article  Google Scholar 

  22. Minnen, J. G., Onigkeit, O., & Alcamo, J. (2002). Critical climate change as an approach to assess climate change impacts in Europe: Development and application. Environmental Science & Policy, 5, 335–347. DOI 10.1016/S1462-9011(02)00044-8.

    Article  Google Scholar 

  23. Peperzak, L. (2003). Climate change and harmful algal blooms in the North Sea. Acta Oecologica, 24, 139–144. DOI 10.1016/S1146-609X(03)00009-2.

    Article  Google Scholar 

  24. Puelles, M. L. F., Pinot, J. M., & Valencia, J. (2003). Seasonal and interannual variability of zooplankton community in waters of Mallorca island (Baleric Sea, Western Mediterranean). 1994–1999. Oceanologica Acta, 26, 673–686. DOI 10.1016/j.oceact.2003.07.001.

    Article  Google Scholar 

  25. Sipkay, Cs., & Hufnagel, L. (2006). Szezonális dinamikai folyamatok egy balatoni makrogerinctelen együttesben. Acta Biologica Debrecina Supplementum Oecologica Hungarica, 14, 211–222.

    Google Scholar 

  26. Sipkay, Cs., & Hufnagel, L. (2007). Klímaváltozási szcenáriók összehasonlító elemzése balatoni makrogerinctelen együttes alapján. Hidrológiai Közlöny, 87, 117–119.

    Google Scholar 

  27. Sipkay, Cs., Nosek, J., Oertel, N., Vadadi-Fülöp, Cs., & Hufnagel, L. (2007). Klímaváltozási szcenáriók elemzése egy dunai Copepoda faj szezonális dinamikájának modellezése alapján. Klíma 21. Füzetek, 49, 80–90.

    Google Scholar 

  28. Somlyódi, L., Herodek, S., & Fisher, F. (1983). Eutrophication of shallow lakes: Modeling and management. Luxemburg: IIASA.

    Google Scholar 

  29. Sommer, U. (1989). Plankton ecology: Succession in plankton communities. New York: Springer.

    Google Scholar 

  30. Sommer, U., Gliwicz, Z. M., Lampert, W., & Duncan, A. (1986). The PEG-model of seasonal succession of planctonic events in freshwaters. Archiv fuer Hydrobiologie, 106, 433–471.

    Google Scholar 

  31. Sommer, U., Padisák, J., Reynolds, C. S., & Juhász-Nagy, P. (1993). Hutchinson’s heritage: The diversity–disturbance relationship in phytoplankton. Hydrobiologia, 249, 1–8. DOI 10.1007/BF00008837.

    Article  Google Scholar 

  32. Straile, D. (2005). Food webs in lakes—Seasonal dynamics and the impacts of climate variability. In A. Belgrano, U. Scharler, J. Dunne, & B. Ulanowitz (Eds.), Aquatic food webs: An ecosystem approach (pp. 41–50). Oxford, UK: Oxford University Press.

    Google Scholar 

  33. Tilman, D. (1982). Resource competition and community structure. Princeton: Princeton University Press.

    Google Scholar 

  34. Tilman, D., Kilham, S. S., & Kilham, D. (1982). Phytoplankton community ecology: The role of limiting nutrients. Annual Review of Ecology and Systematics, 13, 349. DOI 10.1146/annurev.es.13.110182.002025.

    Article  Google Scholar 

  35. Vadadi-Fülöp, Cs., Sipkay, Cs., & Hufnagel, L. (2007). Klímaváltozási szcenáriók értékelése egy szitakötőfaj (Ischnura pumilio Charpentier, 1825) szezonális dinamikája alapján. Acta Biologica Debrecina Supplementum Oecologica Hungarica, 16, 211–219.

    Google Scholar 

  36. Varga-Haszonits, Z. (2003). Az éghajlatváltozás mezőgazdasági hatásának elemzése, éghajlati szcenáriók. AGRO-21. Füzetek, 31, 9–27.

    Google Scholar 

  37. Viitasalo, M., Vuorinen, I., & Ranta, E. (1990). Changes in crustacean mesozooplankton and some environmental parameters in the Archipelago Sea (Northern Baltic) in 1976–1984. Ophelia, 31, 207–217.

    Google Scholar 

Download references

Acknowledgments

This investigation was supported by the projects NKFP 4/037/2001 and the OTKA T042583. The present paper is a contribution to the CLIVARA and PRUDENCE projects. Meteorological data were provided by the Hungarian Meteorological Office. Department of Systematic Zoology and Ecology, Eötvös Loránd University, and Department of Mathematics and Informatics, Corvinus University of Budapest, supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cs. Vadadi-Fülöp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vadadi-Fülöp, C., Türei, D., Sipkay, C. et al. Comparative Assessment of Climate Change Scenarios Based on Aquatic Food Web Modeling. Environ Model Assess 14, 563–576 (2009). https://doi.org/10.1007/s10666-008-9158-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-008-9158-2

Keywords

Navigation