Skip to main content

Advertisement

Log in

A combined hydrologic simulation and landscape design model to prioritize sites for wetlands restoration

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Most landscape design models have been applied to the problem of maximizing species richness in a network of nature reserves. This paper describes a combined hydrologic simulation and landscape design model designed to prioritize sites for wetlands restoration, where the objective is to maximize the amount of nutrients in non-point-source runoff attenuated in the restored wetlands. Targeted site selection in four small watersheds in the Central Valley resulted in predicted levels of nitrogen attenuation two to eight times greater than that from maximizing wetland area without consideration of the location of the restoration sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. J.C. Williams and C.S. ReVelle, Introduction to the special issue, Environ. Model. Assess. 7 (2002) 57–59.

    Article  Google Scholar 

  2. H.J. Greenberg, Mathematical programming models for environmental quality control, Oper. Res. 43(4) (1995) 578–622.

    Google Scholar 

  3. C. ReVelle, Research challenges in environmental management, Eur. J. Oper. Res. 121 (2000) 218–231.

    Article  Google Scholar 

  4. M.A. Clemens, C.S. ReVelle and J.C. Williams, Reserve design for species preservation, Eur. J. Oper. Res. 112 (1999) 273–283.

    Article  Google Scholar 

  5. F.W. Davis, D.M. Stoms, R.L. Church, W.J. Okin and K.N. Johnson, Selecting biodiversity management areas, in: Sierra Nevada Ecosystem Project: Final Report To Congress, Vol. II, Assessments and Scientific Basis for Management Options (Davis, University of California, Centers for Water and Wildland Resources, 1996).

    Google Scholar 

  6. D. Tilman, Biodiversity and ecosystem functioning, in: Nature's Services: Societal Dependence on Natural Ecosystems, eds. G.C. Daily (Island Press, Washington, D.C., 1997).

    Google Scholar 

  7. D.A. Wardle, M.A. Huston, J.P. Grime, F. Berendse, E. Garnier, W.K. Lauenroth, H. Setala and S.D. Wilson, Biodiversity and ecosystem function: an issue in ecology, Bull. Ecol. Soc. Am. 81(3) (2000) 232–235.

    Google Scholar 

  8. A.P. Kinzig, S.W. Pacala and D. Tilman, eds. The Functional Consequences of Biodiversity: Emprical Progress and Theoretical Extensions, (Princeton University Press, Princeton NJ, 2002).

  9. J.B. Loomis and D.S. White, Economic benefits of rare and endangered species: summary and meta-analysis, Ecol. Econ. 18(3) (1996) 197–206.

    Article  Google Scholar 

  10. S.C. Newbold, Integrated modeling for watershed management: multiple objectives and spatial effects, J. Am. Water Resour. Assoc. 38(2) (2002) 341–353.

    Article  Google Scholar 

  11. National Research Council Committee on Restoration of Aquatic Ecosystems. Restoration of Aquatic Ecosystems: Science, Technology, and Public Policy (National Academy Press, Washington, D.C., 1992).

    Google Scholar 

  12. W.J. Mitsch and R.F. Wilson, Improving the success of wetland creation and restoration with know-how, time, and self-design, Ecol. Appl. 6(1) (1996) 77–83.

    Article  Google Scholar 

  13. W.J. Mitsch, Landscape design and the role of created, restored, and natural riparian wetlands in controlling nonpoint source pollution, Ecol. Eng. 1 (1992) 27–47.

    Article  Google Scholar 

  14. U. S. Environmental Protection Agency. Protecting and Restoring America's Watersheds: Status, Trends, and Initiatives in Watershed Management. Office of Water. EPA-840-R-00-001, 2001.

  15. J.B. Hyman and S.G. Leibowitz, A general framework for prioritizing land units for ecological protection and restoration, Environ. Manage. 25(1) (2000) 23–35.

    Article  PubMed  Google Scholar 

  16. A. Ando, J. Camm, S. Polasky and A. Solow, Species distributions, land values, and efficient conservation, Science 279 (1998) 2126–2128.

    Article  CAS  Google Scholar 

  17. M.I. Westphal and H.P. Possingham, Applying a decision-theory framework to landscape planning for biodiversity: follow-up to Watson et al., Conserv. Biol. 17(1) (2003) 327–329.

    Article  Google Scholar 

  18. R.G. Haight, B. Cypher, P.A. Kelly, S. Phillips, H.P. Possingham and K. Ralls, Optimizing reserve expansion for disjunct populations of San Joaquin kit fox, Biol. Conserv. 117(1) (2004) 61–72.

    Article  Google Scholar 

  19. M.I. Westphal, M. Pickett, W.M. Getz and H.P. Possingham, The use of stochastic dynamic programming in optimal landscape reconstruction for metapopulations, Ecol. Appl. 13(2) (2003) 543–555.

    Article  Google Scholar 

  20. J. Hof and M. Bevers, Spatial Optimization for Managed Ecosystems (Columbia University Press, New York, 1998).

    Google Scholar 

  21. J. Hof and M. Bevers, Spatial Optimization in Ecological Applications (Columbia University Press, New York, 2002).

    Google Scholar 

  22. H. Possingham, I. Ball and S. Andelman, 2002. Mathematical methods for identifying representative reserve networks, in: Quantitative Methods for Conservation Biology, eds. S. Ferson and M. Burgman (Springer-Verlag, New York, 2002).

    Google Scholar 

  23. D.E. Calkin, C.A. Montgomery, N.H. Schumaker, S. Polasky, J.L. Arthur and D.J. Nalle, Developing a production possibility set of wildlife species persistence and timber harvest value, Can. J. For. Res. 32 (2002) 1329–1342.

    Article  Google Scholar 

  24. H.P. Possingham, Decision theory and biodiversity management: how to manage a metapopulation. in: Frontiers of Population Ecology, eds. R.B. Floyd, A.W. Sheppard and P.J. DeBarro (CSIRO Publishing, Melbourne, 1996).

    Google Scholar 

  25. S.P. Hubbell, The Unified Neutral Theory of Biodiversity and Biogeography (Princeton University Press, Princeton NJ, 2001).

    Google Scholar 

  26. L.G. Underhill, Optimal and suboptimal reserve selection algorithms, Biol. Conserv. 70 (1994) 85–87.

    Article  Google Scholar 

  27. R.L. Pressey, H.P. Possingham and C.R. Margules, Optimality in reserve selection algorithms: when does it matter and how much?, Biol. Conserv. 76 (1996) 259–267.

    Article  Google Scholar 

  28. G.B. Dantzig, Discrete-variable extremum problems, Oper. Res. 5(2) (1957) 266–277.

    Article  Google Scholar 

  29. S. Kirkpatrick, C.D. Gelatt Jr. and M.P. Vecchi, Optimization by simulated annealing, Science 220 (1983) 671–680.

    Article  CAS  Google Scholar 

  30. Z. Michalewicz and D.B. Fogel, How to Solve It: Modern Heuristics (Springer-Verlag, Berlin, 2000).

    Google Scholar 

  31. P. Fenesta and M.G.C. Resende, GRASP: An annotated bibliography. AT&T Labs Research Technical Report: 0.0.1.1., 2000.

  32. National Research Council, Restoration of Aquatic Ecosystems (National Academy Press, Washington, D.C., 1992).

    Google Scholar 

  33. W.J. Mitsch and J.G. Gosselink, Wetlands, 2nd edn (Van Nostrand Reinhold, New York, 1993).

    Google Scholar 

  34. W.M. Lewis, Jr. Wetlands Explained: Wetland Science, Policy, andPolitics in America (Oxford University Press, New York, 2001).

    Google Scholar 

  35. D.F. Whigham, C. Chitterling and B. Palmer, Impacts of freshwater wetlands on water quality: a landscape perspective, Environ. Manage. 12(5) (1988) 663–671.

    Article  Google Scholar 

  36. C.A. Johnston, Sediment and nutrient retention by freshwater wetlands: effects on surface water quality, Crit. Rev. Environ. Control 21(5–6) (1991) 491–565.

    Article  Google Scholar 

  37. J.W. Gilliam, Riparian wetlands and water quality, J. Environ. Qual. 23(5) (1994) 896–900.

    Article  Google Scholar 

  38. P.D. Jenssen, T. Maehlum, R. Roseth, B. Braskerud, N. Syversen, A. Njos and T. Krogstad, The potential of natural ecosystem self-purifying measures for controlling nutrient inputs, Mar. Pollut. Bull. 29(6–12) (1994) 420–425.

    Article  CAS  Google Scholar 

  39. R.H. Kadlec and R.L. Knight, Treatment Wetlands (Lewis Publishers, Boca Raton, FL, 1996).

    Google Scholar 

  40. C.A. Johnston, N.E. Detenbeck and G.J. Niemi, The cumulative effects of wetlands on stream water quality and quantity: a landscape approach, Biogeochemistry 10 (1990) 105–141.

    Article  Google Scholar 

  41. N.E. Detenbek, C.A. Johnston and G.J. Niemi, Wetland effects on lake water quality in the Minneapolis-St. Paul Metropolitan area, Landsc. Ecol. 8(1) (1993) 39–61.

    Article  Google Scholar 

  42. Committee on Characterization of Wetlands, Wetlands: Characteristics and Boundaries (National Academy Press, Washington, D.C., 1995).

    Google Scholar 

  43. S. Openshaw and P.J. Taylor, The modifiable areal unit problem, in: Quantitative Geography: A British View, eds. N. Wrigley (Routledge and Regan Paul, London, 1981).

    Google Scholar 

  44. http://cdec.water.ca.gov/

  45. R.A. Corbitt, Standard Handbook of Environmental Engineering (McGraw-Hill, New York, NY, 1990).

    Google Scholar 

  46. W. Viessman Jr., G.L. Lewisa and J.W. Knapp, Introduction to Hydrology, 3rd edn (Harper Collins Publishers, New York, 1989).

    Google Scholar 

  47. D.A. Goldhamer and R.L. Snyder, Irrigation scheduling: a guide for efficient on-farm water management (University of California, Division of Agriculture and Natural Resources, publication 21454, 1989).

  48. See http://www.census.gov/geo/www/tiger/tigerua/ua_tgr2k.html, and coverages in e:/wetlands/masterarcviewproject.prj.

  49. U. S. Environmental Protection Agency. Nationwide Evaluation of Combined Sewer Overflows and Urban Stormwater Discharges, Volume 1: Executive summary 1977. Municipal Environmental Research Laboratory, Office of Research and Development, (U.S. EPA, Cincinnati, OH, 1977).

  50. http://www.waterplan.water.ca.gov/landwateruse/landuse/ludataindex.htm.

  51. http://wetlands.fws.gov/index.html.

  52. L.B. Owens, R.W. Van Keuren and W.M. Edwards, Budgets of non-nitrogen nutrients in a high fertility pasture system, Agric. Ecosyst. Environ. 70 (1998) 7–18.

    Article  CAS  Google Scholar 

  53. M. Padgitt, D. Newton, R. Penn and C. Sandretto, Production practices for major crops in U.S agriculture, 1990–97. (Resource economics division, Economic Research Service, USDA; http://www.ers.usda.gov/publications/sb969/sb969c.pdf, 2000).

  54. U.S.D.A. Agricultural Resources and Environmental Indicators, 2000. Economic Research Service, Natural Resources and Environment Division, (2000)

  55. R.L. Pressey and R.M. Cowling, Reserve selection algorithms and the real world, Conserv. Biol. 15(1) (2001) 275–277.

    Article  Google Scholar 

Download references

Acknowledgements

The helpful suggestions from Justin Williams and three anonymous reviewers are gratefully acknowledged. This research was funded in part by funds from the California Water Resources Center, and by an EPA Star grant, research category: Decision Making and Valuation for Environmental Policy, grant number R827932.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Newbold.

Additional information

Disclaimer

The views expressed in this paper are those of the author and do not necessarily represent those of the US Environmental Protection Agency. No official Agency endorsement should be inferred.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newbold, S.C. A combined hydrologic simulation and landscape design model to prioritize sites for wetlands restoration. Environ Model Assess 10, 251–263 (2005). https://doi.org/10.1007/s10666-005-9002-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-005-9002-x

Keywords

Navigation