Skip to main content
Log in

A Dirichlet–Neumann cost functional approach for the Bernoulli problem

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The Bernoulli problem is rephrased into a shape optimization problem. In particular, the cost function, which turns out to be a constitutive law gap functional, is borrowed from inverse problem formulations. The shape derivative of the cost functional is explicitly determined. The gradient information is combined with the level set method in a steepest descent algorithm to solve the shape optimization problem. The efficiency of this approach is illustrated by numerical results for both interior and exterior Bernoulli problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lacey AA, Shillor M (1987) Electrochemical and electro-discharge machining with a threshold current. IMA J Appl Math 39:131–142

    Article  MathSciNet  Google Scholar 

  2. Friedman F (1984) Free boundary problem in fluid dynamics, Astérisque. Soc Math France 118:55–67

    Google Scholar 

  3. Acker A (1977) Heat flow inequalities with applications to heat flow optimization problems. SIAM J Math Anal 8:604–618

    Article  MathSciNet  MATH  Google Scholar 

  4. Acker A (1981) An extremal problem involving distributed resistance. SIAM J Math Anal 12:169–172

    Article  MathSciNet  MATH  Google Scholar 

  5. Fasano A (1992) Some free boundary problems with industrial applications. In: Delfour M (ed) Shape optimization and free boundaries, vol 380. Kluwer, Dordrecht

    Google Scholar 

  6. Flucher M, Rumpf M (1997) Bernoulli’s free-boundary problem, qualitative theory and numerical approximation. J Reine Angew Math 486:165–204

    MathSciNet  MATH  Google Scholar 

  7. Alt A, Caffarelli LA (1981) Existence and regularity for a minimum problem with free boundary. J Reine Angew Math 325:105–144

    MathSciNet  MATH  Google Scholar 

  8. Beurling A (1957) On free boundary problems for the Laplace equation, Seminars on analytic functions, vol 1. Institute of Advance Studies Seminars, Princeton, pp 248–263

  9. Henrot A, Shahgholian H (1997) Convexity of free boundaries with Bernoulli type boundary condition. Nonlinear Anal Theory Methods Appl 28(5):815–823

    Article  MathSciNet  MATH  Google Scholar 

  10. Acker A, Meyer R (1995) A free boundary problem for the p-Laplacian: uniqueness, convexity and successive approximation of solutions. Electron J Differ Equ 8:1–20

    Google Scholar 

  11. Henrot A, Shahgholian H (2000) Existence of classical solution to a free boundary problem for the p-Laplace operator: (II) the interior convex case. Indiana Univ Math J 49(1):311–323

    Article  MathSciNet  MATH  Google Scholar 

  12. Cardaliaguet P, Tahraoui R (2002) Some uniqueness results for the Bernoulli interior free-boundary problems in convex domains. Electron J Differ Equ 102:1–16

    MathSciNet  Google Scholar 

  13. Bouchon F, Clain S, Touzani R (2005) Numerical solution of the free boundary Bernoulli problem using a level set formulation. Comput Method Appl Mech Eng 194:3934–3948

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Haslinger J, Kozubek T, Kunish K, Peichl G (2003) Shape optimization and fictitious domain approach for solving free-boundary value problems of Bernoulli type. Comput Optim Appl 26:231–251

    Article  MathSciNet  MATH  Google Scholar 

  15. Ito K, Kunisch K, Peichl G (2006) Variational approach to shape derivative for a class of Bernoulli problem. J Math Anal Appl 314:126–149

    Article  MathSciNet  MATH  Google Scholar 

  16. Tiihonen T (1997) Shape optimization and trial methods for free-boundary problems, RAIRO Model. Math Anal Numer 31(7):805–825

    MathSciNet  MATH  Google Scholar 

  17. Sokolowski J, Zolésio J-P (1992) Introduction to shape optimization: shape sensitivity analysis. Springer, Berlin

    Book  MATH  Google Scholar 

  18. Novruzi A, Roche J-R (2000) Newton’s method in shape optimisation: a three-dimensional case. BIT Numer Math 40(1):102–120

    Article  MathSciNet  MATH  Google Scholar 

  19. Simon J (1989) Second variation for domain optimization problems. In: Kappel F, Kunish K and Schappacher W (eds) Control and estimation of distributed parameter systems. International Series of Numerical Mathematics, no 91 . Birkhäuser pp 361–378

  20. Osher S, Sethian J (1988) Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comp Phys 56:12–49

    Article  MathSciNet  ADS  Google Scholar 

  21. Pj Ladeveze, Leguillon D (1983) Error estimate procedure in the finite element method and applications. SIAM J Numer Anal 20(3):485–509

    Article  MathSciNet  Google Scholar 

  22. Kohn RV, McKenney A (1990) Numerical implementation of a variational method for electrical impedance tomography. Inverse Probl 6(3):389

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Chaabane S, Jaoua M (1999) Identification of Robin coefficients by means of boundary measurements. Inverse Probl 15(6):1425

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Ben Abda A, Hassine M, Jaoua M, Masmoudi M (2009) Topological sensitivity analysis for the location of small cavities in stokes flows. SIAM J Control Opt 48(5):2871–2900

    Article  MathSciNet  Google Scholar 

  25. Eppler K, Harbrecht H (2012) On a Kohn–Vogelius like formulation of free boundary problems. Comput Optim Appl 52:69–85

    Article  MathSciNet  MATH  Google Scholar 

  26. Eppler K (2000) Boundary integral representations of second derivatives in shape optimization. Discuss Math Differ Incl Control Optim 20:63–78

    Article  MathSciNet  MATH  Google Scholar 

  27. Eppler K (2000) Optimal shape design for elliptic equations via BIE-methods. J Appl Math Comput Sci 10:487–516

    MathSciNet  MATH  Google Scholar 

  28. Delfour MC, Zolesio J-P (2001) Shapes and geometries. SIAM

  29. Murat F, Simon J (1976) Étude de problèmes d’optimal design. Lect Notes Comput Sci 41:54–62

    Article  Google Scholar 

  30. Murat F, Simon J (1976) Sur le controle par un domaine géométrique Research report of the Laboratoire d’Analyse Numérique, University of Paris 6

  31. Simon J (1980) Differentiation with respect to the domain in boundary value problems. Numer Funct Anal Optim 2:649–687

    Article  MathSciNet  MATH  Google Scholar 

  32. Henrot A, Pierre M (2000) Variation et optimization de formes, Une analyse géométrique. Springer, Berlin

    Google Scholar 

  33. Burger M (2001) A framework for the construction of level set methods for shape optimization and reconstruction. Inverse Probl 17:1327–1356

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Osher S, Santosa F (2001) Level set methods for optimization problems involving geometry and constraints. J Comput Phys 171:272–288

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Sethian JA (1999) Level set methods and fast marching methods. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  36. Osher S, Fedkiw R (2002) Level set methods and dynamic implicit surfaces. Springer, New York

    Google Scholar 

  37. Bouchon F, Clain S, Touzani R (2008) A perturbation method for the numerical solution of the Bernoulli problem. J Comput Math 26:23–36

    MathSciNet  Google Scholar 

  38. Adalsteinsson A, Sethian JA (1999) The fast construction of extension velocities in level set methods. J Comput Phys 148:2–22

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bouchon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Abda, A., Bouchon, F., Peichl, G.H. et al. A Dirichlet–Neumann cost functional approach for the Bernoulli problem. J Eng Math 81, 157–176 (2013). https://doi.org/10.1007/s10665-012-9608-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-012-9608-3

Keywords

Navigation