Journal of Engineering Mathematics

, Volume 74, Issue 1, pp 53–60

The development of forced convection heat transfer near a forward stagnation point with Newtonian heating


    • Department of Applied MathematicsUniversity of Leeds
  • R. Nazar
    • School of Mathematical SciencesUniversiti Kebangsaan Malaysia
  • I. Pop
    • Faculty of MathematicsUniversity of Cluj

DOI: 10.1007/s10665-011-9487-z

Cite this article as:
Merkin, J.H., Nazar, R. & Pop, I. J Eng Math (2012) 74: 53. doi:10.1007/s10665-011-9487-z


A mathematical model for the unsteady forced convection boundary-layer flow near a forward stagnation point is considered when there is Newtonian heating on the surface whereby the heat transfer is proportional to the local surface temperature. In a previous paper (Salleh et al. J Eng Math 69:101–110, 2011), a critical value γc, dependent on the Prandtl number σ, of the heat transfer coefficient γ was identified, with solutions for the corresponding steady problem possible only for γ < γc. The unsteady problem considered here shows that these steady states are attained at large times when γ < γc. For γ > γc, the solution still continues to large time, now growing exponentially with time. This rate of growth is determined by an eigenvalue problem which we solve numerically for general values of γ and σ and asymptotically for large γ and both large and small σ.


Forced convectionNewtonian heatingStagnation point flowUnsteady boundary-layer flow

Copyright information

© Springer Science+Business Media B.V. 2011