Skip to main content

Advertisement

Log in

Integrated approach to assess the environmental impact of mining activities: estimation of the spatial distribution of soil contamination (Panasqueira mining area, Central Portugal)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Through the years, mining and beneficiation processes in Panasqueira Sn-W mine (Central Portugal) produced large amounts of As-rich mine wastes laid up in huge tailings and open-air impoundments (Barroca Grande and Rio tailings) that are the main source of pollution in the surrounding area once they are exposed to the weathering conditions leading to the formation of acid mine drainage (AMD) and consequently to the contamination of the surrounding environments, particularly soils. The active mine started the exploration during the nineteenth century. This study aims to look at the extension of the soil pollution due to mining activities and tailing erosion by combining data on the degree of soil contamination that allows a better understanding of the dynamics inherent to leaching, transport, and accumulation of some potential toxic elements in soil and their environmental relevance. Soil samples were collected in the surrounding soils of the mine, were digested in aqua regia, and were analyzed for 36 elements by inductively coupled plasma mass spectrometry (ICP-MS). Selected results are that (a) an association of elements like Ag, As, Bi, Cd, Cu, W, and Zn strongly correlated and controlled by the local sulfide mineralization geochemical signature was revealed; (b) the global area discloses significant concentrations of As, Bi, Cd, and W linked to the exchangeable and acid-soluble bearing phases; and (c) wind promotes the mechanical dispersion of the rejected materials, from the milled waste rocks and the mineral processing plant, with subsequent deposition on soils and waters. Arsenic- and sulfide-related heavy metals (such as Cu and Cd) are associated to the fine materials that are transported in suspension by surface waters or associated to the acidic waters, draining these sites and contaminating the local soils. Part of this fraction, especially for As, Cd, and Cu, is temporally retained in solid phases by precipitation of soluble secondary minerals (through the precipitation of hydrated metal sulfates) in warm, dry periods, but such minerals are easily dissolved during rainy periods. Climate is an important instability factor, and the hot and dry summers and cold, rainy, and windy winters in this region are physical phenomena that enhance the good receptivity of these soils to retain some of the metals present in the primary and also the secondary mineralogy. Considering the obtained results from both the sequential chemical extraction and the environmental risk assessment according to the risk assessment code, Ag, Cd, Cu, and Zn are classified with very high risk while As is classified with medium risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdi, H., & Williams, L. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433–459. doi:10.1002/wics.101.

    Article  Google Scholar 

  • Akai, J., & Anawar, M. (2013). Mineralogical approach in elucidation of contamination mechanism for toxic trace elements in the environment: special reference to arsenic contamination in groundwater. Physics and Chemistry of the Earth, Parts A/B/C, 58–60, 2–12. doi:10.1016/j.pce.2013.04.011.

    Article  Google Scholar 

  • Anju, M., & Banerjee, D. K. (2012). Multivariate statistical analysis of heavy metals in soils of a Pb–Zn mining area, India. Environmental Monitoring and Assessment, 184, 4191–4206.

    Article  CAS  Google Scholar 

  • Ávila, P., Ferreira da Silva, E., Farinha, J. Á. (2008a). Geochemical distribution and behavior of Arsenic in the vicinity of the active Sn-W Panasqueira mine, Central Portugal. In Int workshop GeochemArsenic (pp. 2–7).

  • Ávila, P. F., & Santos Oliveira, J. M. (2004). Geochemistyry of soils on the influence of some abandoned mines of the Trásos Montes region (Portugal). Bragança: I Iberian Congress of Soil Science.

    Google Scholar 

  • Ávila, P., Ferreira da Silva, E., Salgueiro, A. R., & Farinha, J. Á. (2008b). Geochemistry and mineralogy of mill tailings impoundments from the Panasqueira mine (Portugal): implications for the Surrounding Environment. Journal of International Mine Water Association, 27(3), 210–224.

  • Bednar, A. J., Boyd, R. E., Jones, W. T., McGrath, C. J., Johnson, D. R., Chappell, M. A., & Ringelberg, D. B. (2009). Investigations of tungsten mobility in soil using column tests. Chemosphere, 75(8), 1049–1056.

    Article  CAS  Google Scholar 

  • Bini, C., Sartori, G., Wahsha, M., & Fontana, S. (2011). Background levels of trace elements and soil geochemistry at regional level in NE Italy. Journal of Geochemical Exploration, 109(1–3), 125–133.

    Article  CAS  Google Scholar 

  • Bloot, C., & de Wolf, L. C. M. (1953). Geological features of the Panasqueira tin-tungsten ore occurrence (Portugal). Boletín de la Sociedad Geológica Portuguese, 11(1), 1–58.

    CAS  Google Scholar 

  • Breiter, K. (2001). Report about laboratory investigations of rock samples from the Panasqueira mine and recommendations for future exploration. Panasqueira Mine not published Rep.

  • Bueno, P. C., Bellido, E., Rubí, J. A. M., & Ballesta, R. J. (2009). Concentration and spatial variability of mercury and other heavy metals in surface soil samples of periurban waste mine tailing along a transect in the Almadén mining district (Spain). Environmental Geology, 56, 815–824.

    Article  CAS  Google Scholar 

  • Candeias, C., Ferreira da Silva, E., Salgueiro, A., Pereira, H., Reis, A., Patinha, C., Matos, J., & Ávila, P. H. (2011a). The use ofmultivariatestatisticalanalysisofgeochemical data for assessing the spatial distribution of soil contamination by potentially toxic elements in the Aljustrel miningarea (IberianPyriteBelt, Portugal). Environmental Earth Sciences, 62, 1461–1479.

    Article  CAS  Google Scholar 

  • Candeias, C., Ferreira da Silva, E., Salgueiro, A., Pereira, H., Reis, A., Patinha, C., Matos, J. X., & Ávila, P. H. (2011b). Assessment of the soil contamination by potentially toxic elements in Aljustrel miningarea in order to implement soil reclamation strategies. Land Degradation and Development, 22, 565–585.

    Article  Google Scholar 

  • Candeias, C., Melo, R., Ávila, P. F., Ferreira da Silva, E., Salgueiro, A., & Teixeira, J. P. (2014). Heavy metal pollution in mine–soil–plantsystem in S. Francisco deAssis—Panasqueira mine (Portugal). Applied Geochemistry, 44, 12–26.

    Article  CAS  Google Scholar 

  • Cardoso, J. C., Bessa, M. T., Marado, M. B. (1971). Carta III.1 – Carta de solos 1:1 000 000, Atlas do Ambiente. Instituto do Ambiente, Lisboa (in Portuguese).

  • Cavey, G., & Gunning, D. (2006). Updated technical report on the Panasqueira mine, Castelo Branco District. Portugal: OREQUEST.

    Google Scholar 

  • CD-ROM Atlas do Potencial Eólico para Portugal Continental – Version 1.0. Instituto Nacional de Engenharia, Tecnologia e Inovação (2004). ISBN 972-676-196-4 (in Portuguese).

  • Cheng, H. X., Li, M., Zhao, C. D., Li, K., Peng, M., Qin, A. H., & Cheng, X. M. (2014). Overview of trace metals in the urban soil of 31 metropolises in China. Journal of Geochemical Exploration, 139, 31–52.

    Article  CAS  Google Scholar 

  • Chon, H. T., Lee, J. S., & Lee, J. U. (2011). Heavy metal contamination of soil, its risk assessment and bioremediation. Geotechnical Engineering, 14, 191–206.

    Google Scholar 

  • Chopin, E. I. B., & Alloway, B. J. (2007). Distribution and mobility of trace elements in soils and vegetation around the mining and smelting areas of Tharsis, Ríotinto and Huelva, Iberian Pyrite Belt, SW Spain. Water, Air, and Soil Pollution, 182, 245–261.

    Article  CAS  Google Scholar 

  • Chu Ngoc, K., Van Nguyen, N., Nguyen Dinh, B., Le Thanh, S., Tanaka, S., Kang, Y., et al. (2009). Arsenic and heavy metal concentrations in agricultural soils around tin and tungsten mines in the Dai Tu district, N. Vietnam. Water, Air, and Soil Pollution, 197, 75–89.

    Article  Google Scholar 

  • Costa, P. A. S. (2004). Atlas do potencial eólico para Portugal Continental. MSc thesis, Sciences Fac, Lisbon Univ (in Portuguese).

  • Costa, P., Estanqueiro, A. (2006a). Development and validation of the Portuguese Wind Atlas. In Proc Eur Wind Ener Conf, (EWEC), Athens.

  • Costa, P., Estanqueiro, A. (2006b). Building a Wind Atlas for mainland Portugal using a weather type classification. ProcEur Wind Energy Conf, (EWEC), Athens

  • Das, S. K., & Chakrapani, G. J. (2011). Assessment of trace metal toxicity in soils of Raniganj Coalfield, India. Environmental Monitoring and Assessment, 177, 63–71.

    Article  CAS  Google Scholar 

  • Dayani, M., & Mohammadi, J. (2010). Geostatistical assessment of Pb, Zn and Cd contamination in near-surface soils of the urban-mining transitional region of Isfahan, Iran. Pedosphere, 20, 568–577.

    Article  CAS  Google Scholar 

  • Deschamps, E., Ciminelli, V. S. T., Lange, F. T., Matschullat, J., Raue, B., & Schmidt, H. (2002). Soil and sediment geochemistry of the Iron Quadrangle, Brazil: the case of arsenic. Journal of Soils and Sediments, 2(4), 216–222.

    Article  CAS  Google Scholar 

  • e-Ecorisk (2007). A regional enterprise network decision-support system for environmental risk and disaster management of large-scale industrial soils. Contract n.° EGV1-CT-2002-00068, WP3 – case study site characterization, ProjManag Rep, Deliverable 3.1.

  • Fernandes-Caliani, J. C., Barba-Brioso, C., Gonzales, I., & Galán, E. (2009). Heavy metal pollution in soils around the abandoned mine sites of Iberian pyrite belt (Southwest Spain). Water, Air, and Soil Pollution, 200, 211–226.

    Article  Google Scholar 

  • Ferreira, M. M. S. I. (2004). Dados geoquímicos de base de solos de Portugal Continental, utilizando amostragem de baixa densidade. PhD Thesis, Aveiro University (in Portuguese).

  • Ferreira da Silva, E., Cardoso Fonseca, E., Matos, J., Patinha, C., Reis, P., & Santos Oliveira, J. M. (2005). The effect of unconfined mine tailings on the geochemistry of soils, sediments and surface waters of the Lousal area (Iberian Pyrite Belt, Southern Portugal). Land Degradation and Development, 16, 213–228.

    Article  Google Scholar 

  • Ferreira da Silva, E., Ávila, P. F., Salgueiro, A., Candeias, C., & Pereira, H. (2013). Quantitative–spatial assessment of soil contamination in S. Francisco de Assis due to mining activity of the Panasqueira mine (Portugal). Environmental Science and Pollution Research, 20(11), 7534–7549. doi:10.1007/s11356-013-1495-2.

    Article  CAS  Google Scholar 

  • Fiedler, H. J., & Rösler, H. J. (1993). Spurenelemente in der Umwelt. Jena: Gustav Fischer Verlag (in dutch).

    Google Scholar 

  • Franco, C., Soares, A., & Delgado, J. (2006). Geostatistical modelling of heavy metal contamination in the topsoil of Guadiamar river margins (S Spain) using a stochastic simulation technique. Geoderma, 136, 852–864.

    Article  CAS  Google Scholar 

  • Garriguesa, S., Allardb, D., Baretc, F., & Morisette, J. (2008). Multivariate quantification of landscape spatial heterogeneity using variogram models. Remote Sensing of Environment, 112(1), 216–230.

    Article  Google Scholar 

  • Ha, N. T. H., Sakakibara, M., Sano, S., & Nhuan, M. T. (2011). Uptake of metals and metalloids by plants growing in a lead–zinc mine area, Northern Vietnam. Journal of Hazardous Materials, 186, 1384–1391.

    Article  Google Scholar 

  • Hu, X. F., Jiang, Y., Shu, Y., Hu, X., Liu, L., & Luo, F. (2014). Effects of mining wastewater discharges on heavy metal pollution and soil enzyme activity of the paddy fields. Journal of Geochemical Exploration, 147(B), 139–150.

    Article  CAS  Google Scholar 

  • Jaques Ribeiro, L. M., & Gonçalves, A. C. R. (2013). Contributo para o conhecimento geológico e geomorfológico da área envolvente do Couto Mineiro da Panasqueira. Centro de Estudos de Geografia e Ordenamento do Território. Geografia e Ordenamento do Território, 3, 93–116 (in Portuguese).

    Google Scholar 

  • Julivert, F., Fontboté, J., Ribeiro, A., Conde, L. (1974). Mapa Tectonico de la Península Ibérica y Baleares, escala 1:1,000,000. InstGeolMineroEspaña, Madrid (in Spanish).

  • Jung, M. C. (2008). Heavy metal concentrations in soils and factors affecting metal uptake by plants in the vicinity of a Korean Cu-W mine. Sensors, 8, 2413–2423.

    Article  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants. 4th ed. CRC press.

  • Kabata-Pendias, A., Mukherjee, A. (2007). Trace elements from soil to human. Springer-Verlag.

  • Karim, Z., Qureshi, B. A., & Mumtaz, M. (2015). Geochemical baseline determination and pollution assessment of heavy metals in urban soils of Karachi, Pakistan. Ecological Indicators, 48, 358–364.

    Article  CAS  Google Scholar 

  • Kelly, W. C., & Rye, R. O. (1979). Geologic, fluid inclusion and stable isotope studies of the tin-tungsten deposits of Panasqueira, Portugal. Economic Geology, 74, 1721–1822.

    Article  CAS  Google Scholar 

  • Kien, C. N., Noi, N. V., Son, L. T., Ngoc, H. M., Tanaka, S., Nishina, T., et al. (2010). Heavy metal contamination of agricultural soils around a chromite mine in Vietnam. Soil Science Plant Nutrition, 56, 344–356.

    Article  CAS  Google Scholar 

  • Kim, J. Y., Kim, K. W., Ahn, J. S., Ko, I., & Lee, C. H. (2005). Investigation and risk assessment modeling of As and other heavy metals contamination around five abandoned metal mines in Korea. Environmental Geochemistry and Health, 27, 193–203.

    Article  CAS  Google Scholar 

  • Kim, S., Kwon, H. J., Cheong, H. K., Choi, K., Jang, J. Y., Jeong, W. C., et al. (2008). Investigation on health effects of an abandoned metal mine. Journal of Korean Medical Science, 23, 452–458.

    Article  Google Scholar 

  • Ko, B. G., Park, S. J., Jung, G. B., Kim, M. K., Kim, G. Y., Hong, S. Y., et al. (2010). Characteristics of soil heavy metal contents in the agricultural areas near closed mine in Korea. 19th World Congress of Soil Science, Soil Solutions for a Changing World, pp. 27–30.

  • Kraus, U., & Wiegand, J. (2006). Long-term effects of the Aznalcollar mine spill—heavy metal content and mobility in soils and sediments of the Guadiamar river valley (SW Spain). The Science of the Total Environment, 367, 855–871.

    Article  CAS  Google Scholar 

  • Krishna, A.K., Mohan, K.R., Murthy, N.N. (2010). Heavy metal pollution in soils around the abandoned mine sites of Nuggihalli Schist Belt, Karnataka, India. Geochimica et Cosmochimica Acta, 74, A30.

  • Ladwani, K. D., Ladwani, K. D., Manik, V. S., & Ramteke, D. S. (2012). Assessment of heavy metal contaminated soil near coal mining area in Gujarat by toxicity characteristics leaching procedure. International Journal of Life Sciences Biotechnology and Pharma Research, 1, 73–80.

    CAS  Google Scholar 

  • Lambrechts, T., Couder, E., Bernal, M. P., Faz, Á., Iserentant, A., & Lutts, S. (2011). Assessment of heavy metal bioavailability in contaminated soils from a former mining area (La Union, Spain) using a rhizospheric test. Water, Air, and Soil Pollution, 217, 333–346.

    Article  CAS  Google Scholar 

  • Leal, M. V. (1945). As Minas da Panasqueira: vida e história. Portugália Editora (in Portuguese).

  • Lee, J. S., Chon, H. T., & Kim, K. W. (2005). Human risk assessment of As, Cd, Cu and Zn in the abandoned metal mine site. Environmental Geochemistry and Health, 27, 185–191.

    Article  CAS  Google Scholar 

  • Levitan, D., Schreiber, M. E., Seal, R. R., II, Bodnar, R. J., & Aylor, J. G., Jr. (2014). Developing protocols for geochemical baseline studies: an example from the Coles Hill uranium deposit, Virginia, USA. Applied Geochemistry, 43, 88–100.

    Article  CAS  Google Scholar 

  • Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. The Science of the Total Environment, 468–469, 843–853.

    Article  Google Scholar 

  • Lim, H. S., Lee, J. S., Chon, H. T., & Sager, M. (2008). Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea. Journal of Geochemical Exploration, 96, 223–230.

    Article  CAS  Google Scholar 

  • Lotze, F. (1945). Observationrespect a la division de los variscides de la Meseta Ibérica. Publ Estrag Geol, 5, 149–166 (in Spanish).

    Google Scholar 

  • Luo, X. S., Yu, S., Zhu, Y. G., & Li, X. D. (2012). Trace metal contamination in urban soils of China. The Science of the Total Environment, 421–422, 17–30.

    Article  Google Scholar 

  • Madejón, P., Murillo, J. M., Marañón, T., Espinar, J. L., & Cabrera, F. (2006). Accumulation of As, Cd and selected trace elements in tubers of Scirpusmaritimus L. from Doñana marshes (South Spain). Chemosphere, 64, 742–748.

    Article  Google Scholar 

  • Martínez López, J., Llamas Borrajo, J., de Miguel García, E., Rey Arrans, J., Hidalgo Estévez, M. C., & Sáez Castillo, A. (2008). Multivariate analysis of contamination in the mining district of Linares (Jaén, Spain). Applied Geochemistry, 23, 2324–2336.

    Article  Google Scholar 

  • Martínez, J., Llamas, J., De Miguel, E., Rey, J., & Hidalgo, M. C. (2007). Determination of the geochemical background in a metal mining site: example of the mining district of Linares (South Spain). Journal of Geochemical Exploration, 94, 19–29.

    Article  Google Scholar 

  • Mench, M. (1993). Notions sur les élémentsen traces pour unequalité des sols et des produitsvégétaux. Purpan, 166, 118–127 (in French).

    Google Scholar 

  • Ministry of the Environment. (2011). Soil, groundwater and sediment standards for the use under Part XV.1 of the environmental protection act. Ontario: E-Publishing.

    Google Scholar 

  • Moncur, M. C., Jambor, J. L., Ptacek, C. J., & Blowes, D. W. (2009). Mine drainage from the weathering of sulfide minerals and magnetite. Applied Geochemistry, 24, 2362–2373.

    Article  CAS  Google Scholar 

  • Moreno-Jiménez, E., Peñalosa, J. M., Manzano, R., Carpena-Ruiz, R. O., Gamarra, R., & Esteban, E. (2009). Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora. Journal of Hazardous Materials, 162, 854–859.

    Article  Google Scholar 

  • Navarro, M. C., Pérez-Sirvent, C., Martínez-Sánchez, M. J., Vidal, J., Tovar, P. J., & Bech, J. (2008). Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. Journal of Geochemical Exploration, 96, 183–193.

    Article  CAS  Google Scholar 

  • Noronha, F., Doria, A., Dubessy, J., & Charoy, B. (1992). Characterization and timing of the different types of fluids present in the barren and ore veins of the W-Sn deposit of Panasqueira, Central Portugal. Mineral Deposits, 27, 72–79.

    Article  CAS  Google Scholar 

  • Ordóñez, A., Álvarez, R., Charlesworth, S., De Miguel, E., & Loredom, J. (2011). Risk assessment of soils contaminated by mercury mining, Northern Spain. Journal of Environmental Monitoring, 13, 128–136.

    Article  Google Scholar 

  • Oyarzun, R., Cubas, P., Higueras, P., Lillo, J., & Llanos, W. (2009). Environmental assessment of the arsenic-rich, Rodalquilar gold–(copper–lead–zinc) mining district, SE Spain: data from soils and vegetation. Environmental Geology, 58, 761–777.

    Article  CAS  Google Scholar 

  • Oyarzun, R., Lillo, J., López-García, J. A., Esbrí, J. M., Cubas, P., Llanos, W., et al. (2011). The MazarrónPb–(Ag)–Zn mining district (SE Spain) as a source of heavy metal contamination in a semiarid realm: geochemical data from mine wastes, soils, and stream sediments. Journal of Geochemical Exploration, 109, 113–124.

    Article  CAS  Google Scholar 

  • Pérez, M. A. (2011). Studies of polluted mine soils and treatment of wastewaters. Applications of synchrotron based techniques, field portable XRay Fluorescence and advanced oxidation processes. PhD thesis, 207 pp.

  • Polya, D. A. (1989). Chemistry of the main stage ore-forming fluids of the Panasqueira W-Cu(Ag)-Sn deposit, Portugal: implications for models of ore genesis. Economic Geology, 84, 1134–1152.

    Article  CAS  Google Scholar 

  • Radojevic, M., & Bashkin, V. N. (1999). Practical environmental analysis. Cambridge: Royal Soc Chem.

    Google Scholar 

  • Rafiei, B., Khodaei, A. S., Khodabakhsh, S., Hashemi, M., & Nejad, M. B. (2010). Contamination assessment of lead, zinc, copper, cadmium, arsenic and antimony in Ahangaran mine soils, Malayer, West of Iran. Soil and Sediment Contamination: An International Journal, 19, 15.

    Google Scholar 

  • Rahimsouri, Y., Yaghubpur, A., Modabberi, S., & Alipour, S. (2011). Environmental impacts of natural contaminants and mining activities on the surface and agricultural soils in the Aq-Darreh river watershed, Takab, West Azerbaijan Province, NW Iran. Iranian Journal of Science and Technology, 2, 101–111.

    Google Scholar 

  • Reimann, C., & Caritat, P. (1998). Chemical elements in the environment: factsheets for the geochemist and environmental scientist. Berlin: Springer Verlag.

    Book  Google Scholar 

  • Reis, A. C. (1971). As Minas da Panasqueira. Bol Minas, 8(1), 3–34 (in Portuguese).

    Google Scholar 

  • Rodríguez, L., Ruiz, E., Alonso-Azcárate, J., & Rincón, J. (2009). Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. Journal of Environmental Management, 90, 1106–1116.

    Article  Google Scholar 

  • Sadhu, K., Adhikari, K., & Gangopadhyay, A. (2012). Assessment of heavy metal contamination of soils in and around open cast mines of Raniganj area, India. International Journal of Environmental Engineering, 1, 77–85.

    Google Scholar 

  • Son, H., & Jung, M. C. (2011). Relative extraction ratio (RER) for arsenic and heavy metals in soils and tailings from various metal mines, Korea. Environmental Geochemistry and Health. doi:10.1007/s10653-010-9356-0.

    Google Scholar 

  • Sousa, B. (1985). Perspectiva sobre os conhecimentos actuais do Complexo Xisto-Grauváquico de Portugal. Mem Not Mus Lab Min Geol Univ Coimbra, 100, 1–16 (in Portuguese).

    Google Scholar 

  • Thadeu, D. (1951). Geologia do couto mineiro da Panasqueira. Comunicações dos Serviços Geológicos de Portugal, 32, 5–64 (in Portuguese).

    Google Scholar 

  • Violante, A., Cozzolino, V., Perelomov, L., Caporale, A. G., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition, 10(3), 268–292.

    Article  Google Scholar 

  • Wei, B. G., & Yang, L. S. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94, 99–107.

    Article  CAS  Google Scholar 

  • Wimmers, D. (1983). Sulfide mineralogy of the wolframite-bearing veins on level 2, Barroca Grande, Panasqueira, Portugal. Int rept. Free University Amsterdam.

  • Wu, J., Teng, Y., Lu, S., Wang, Y., & Jiao, X. (2014). Evaluation of soil contamination indices in a mining area of Jiangxi, China. PLoS ONE, 9(11), e112917. doi:10.1371/journal.pone.0112917.

    Article  Google Scholar 

  • Wu, S., Peng, S., Zhang, X., Wu, D., Luo, W., Zhang, T., Zhou, S., Yang, G., Wan, H., & Wu, L. (2015). Levels and health risk assessments of heavy metals in urban soils in Dongguan, China. Journal of Geochemical Exploration, 148, 71–78.

    Article  CAS  Google Scholar 

  • Xie, X.-D., Min, X.-B., Chai, L.-Y., Tang, C.-J., Liang, Y.-J., Li, M., Ke, Y., Chen, J., & Wang, Y. (2013). Quantitative evaluation of environmental risks of flotation tailings from hydrothermal sulfidation–flotation process. Environmental Science and Pollution Research, 20, 6050–6058.

    Article  CAS  Google Scholar 

  • Zhang, C., Quiao, Q., Piper, J. D., & Huang, B. (2011). Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods. Environmental Pollution, 159, 3057–3070.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is financially supported by Fundação para a Ciência e a Tecnologia (FCT) (grant SFRH/BD/63349/2009).

Conflict of interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Candeias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Candeias, C., Ávila, P.F., Ferreira da Silva, E. et al. Integrated approach to assess the environmental impact of mining activities: estimation of the spatial distribution of soil contamination (Panasqueira mining area, Central Portugal). Environ Monit Assess 187, 135 (2015). https://doi.org/10.1007/s10661-015-4343-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4343-7

Keywords

Navigation