Skip to main content

Advertisement

Log in

Delineating optimal settlement areas of juvenile reef fish in Ngederrak Reef, Koror state, Republic of Palau

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Establishing the effectiveness of habitat features to act as surrogate measures of diversity and abundance of juvenile reef fish provides information that is critical to coral reef management. When accurately set on a broader spatial context, microhabitat information becomes more meaningful and its management application becomes more explicit. The goal of the study is to identify coral reef areas potentially important to juvenile fishes in Ngederrak Reef, Republic of Palau, across different spatial scales. To achieve this, the study requires the accomplishment of the following tasks: (1) structurally differentiate the general microhabitat types using acoustics; (2) quantify microhabitat association with juvenile reef fish community structure; and (3) conduct spatial analysis of the reef-wide data and locate areas optimal for juvenile reef fish settlement. The results strongly suggest the importance of branching structures in determining species count and abundance of juvenile reef fish at the outer reef slope of Ngederrak Reef. In the acoustic map, the accurate delineation of these features allowed us to identify reef areas with the highest potential to harbor a rich aggregation of juvenile reef fish. Using a developed spatial analysis tool that ranks pixel groups based on user-defined parameters, the reef area near the Western channel of Ngederrak is predicted to have the most robust aggregation of juvenile reef fish. The results have important implications not only in management, but also in modeling the impacts of habitat loss on reef fish community. At least for Ngederrak Reef, the results advanced the utility of acoustic systems in predicting spatial distribution of juvenile fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Almany, G. R. (2004a). Differential effects of habitat complexity, predators and competitors on abundance of juvenile and adult coral reef fishes. Oecologia, 141, 105–113.

    Article  Google Scholar 

  • Almany, G. R. (2004b). Does increased habitat complexity reduce predation and competition in coral reef fish assemblage? Oikos, 106, 275–284.

    Article  Google Scholar 

  • Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Cote, I. M., & Watkinson, A. R. (2009). Flattening of Carribean coral reefs: region wide declines in architectural complexity. Proceedings of the Royal Society of London B Bio. doi:10.1098/rspb.2009.0339.

    Google Scholar 

  • Battista, T. A., Costa, B. M., & Anderson, S. M. (2007). Shallow-water benthic habitats of the Republic of Palau (DVD). Silver Spring: NOAA Technical Memorandum NOS NCCOS 59, Biogeography Team.

    Google Scholar 

  • Beger, M., & Possingham, H. P. (2008). Environmental factors that influence the distribution of coral reef fishes: modeling occurrence data for broad-scale conservation and management. Marine Ecology-Progress Series, 361, 1–13. doi:10.3354/meps07481.

    Article  Google Scholar 

  • Bejarano, S., Mumby, P. J., & Sotheran, I. (2011). Predicting structural complexity of reefs and fish abundance using acoustic remote sensing (RoxAnn). Marine Biology, 158, 489–504. doi:10.1007/s00227-010-1575-5.

    Article  Google Scholar 

  • Bonin, M. C., Srinivasan, M., Almany, G. R., & Jones, G. P. (2009). Interactive effects of interspecific competition and microhabitat on early post-settlement survival in a coral reef fish. Coral Reefs, 28, 265–274.

    Article  Google Scholar 

  • Buston, P. M. (2003). Forcible eviction and prevention of recruitment in the clown anemonefish. Behavioral Ecology, 14, 576–582.

    Article  Google Scholar 

  • Cabaitan, P. C., Gomez, E. D., & Alino, P. M. (2008). Effects of coral transplantation and giant clam restocking on the structure of fish communities on degraded patch reefs. Journal of Experimental Marine Biology and Ecology. doi:10.1016/j.jembe.2008.01.001.

    Google Scholar 

  • Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117–143.

    Article  Google Scholar 

  • Clarke, K. R, & Gorley, R. N. (2006) Primer v6. User manual/tutorial. PRIMER-E:Plymouth PL1 3DH.

  • Clarke, K. R, & Warwick, R. M. (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edition. PRIMER-E: Plymouth PL1 3DH.

  • English, S., Wilkinson, C., Baker V. (1994). Survey manual for tropical marine resources. ASEAN-Australian Marine Science Project: Living Coastal Resources, Australia 4810: Australian Institute of Marine Science, PMB No. 3, Townsville Mail Centre.

  • Foster, G., Ticzon, V. S., Riegl, B. M., & Mumby, P. J. (2011). Detecting end-member structural and biological elements of a coral reef using a single-beam acoustic ground discrimination system. International Journal of Remote Sensing. doi:10.1080/01431161.2010.527396.

    Google Scholar 

  • Friedlander, A. M., & Parrish, J. D. (1998). Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. Journal of Experimental Marine Biology and Ecology, 224, 1–30.

    Article  Google Scholar 

  • Gratwicke, B., & Speight, M. R. (2004). The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. Journal of Fish Biology, 66, 650–667. doi:10.1111/j.1095-8649.2005.00629.x.

    Article  Google Scholar 

  • Gratwicke, B., & Speight, M. R. (2005). Effects of habitat complexity on Caribbean marine fish assemblages. Marine Ecology-Progress Series, 292, 301–310.

    Article  Google Scholar 

  • Grigg, R. W. (1994). Effects of sewage discharge, fishing pressure and habitat complexity on coral reef ecosystems and reef fishes in Hawaii. Marine Ecology-Progress Series, 103, 25–34.

    Article  Google Scholar 

  • Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E. D., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M., Iglesias-Prieto, J., Muthiga, N., Bradbury, R. H., Dubi, A., & Hatziolos, M. E. (2007). Coral reefs under rapid climate change and ocean acidification. Science, 318, 1737–1742.

    Article  CAS  Google Scholar 

  • Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., Bradbury, R., Cooke, R., Erlandson, J., Estes, J. A., Hughes, T. P., Kidwell, S., Lange, C. B., Lenihan, H. S., Pandolfi, J. M., Peterson, C. S., Steneck, R. S., Tegner, M. J., & Warner, R. R. (2001). Historical overfishing an the recent collapse of coastal ecosystem. Science, 293, 629–638.

    Article  CAS  Google Scholar 

  • Johansson, C. L., Bellwood, D. R., & Depczynki, M. (2012). The importance of live coral for small-sized herbivorous reef fishes in physically challenging environments. Marine and Freshwater Research, 63(8), 672–679. doi:10.1071/MF12011.

    Article  Google Scholar 

  • Jones, G. P., McCormick, M. I., Srinivasan, M., & Eagle, J. V. (2005). Coral decline threatens fish biodiversity in marine reserves. PNAS, 101, 8251–8253. doi:10.1073/pnas.0401277101.

    Article  Google Scholar 

  • Jordan, A., Lawler, M., Halley, V., & Barrett, N. (2005). Seabed habitat mapping in the Kent Group of islands and its role in marine protected area planning. Aquatic Conservation, 15, 51–70.

    Article  Google Scholar 

  • Joyce, K. E., Phinn, S. R., Roelfsema, C. M., Neil, D. T., & Dennison, W. T. (2004). Combining Landsat ETM+ and reef check classifications for mapping coral reefs: a critical assessment from the Southern Great Barrier Reef. Australia Coral Reefs, 23, 21–25. doi:10.1007/s00338-003-0357-7.

    Article  Google Scholar 

  • Knudby, A., Brenning, A., & LeDrew, E. (2010a). New approaches to modeling fish-habitat relationships. Ecological Modelling, 221, 503–511.

    Article  Google Scholar 

  • Knudby, A., LeDrew, E., & Brenning, A. (2010b). Predictive mapping of reef fish species richness, diversity and biomass in Zanzibar using IKONOS imagery and machine-learning techniques. Remote Sensing of Environment, 114, 1230–1241.

    Article  Google Scholar 

  • Kuffner, I. B., Brock, J. C., Grober-Dunsmore, R., Bonito, V. E., Hickey, T. D., & Wright, C. W. (2007). Relationships between reef fish communities and remotely sensed rugosity measurements in Biscayne National Park, Florida, USA. Environmental Biology of Fishes, 78, 71–82. doi:10.1007/s10641-10006-19078-10644.

    Article  Google Scholar 

  • Laegdsgaard, P., & Johnson, C. (2001). Why do juvenile fish utilize mangrove habitats? Journal of Experimental Marine Biology and Ecology, 257, 229–253.

    Article  Google Scholar 

  • Marcos, M. S. A., David, L. T., Peñaflor, E., Ticzon, V. S., & Soriano, M. (2007). Automated benthic counting of living and non-living components in Ngedarrak Reef, Palau via subsurface underwater video. Environmental Monitoring and Assessment. doi:10.1007/s10661-007-0027-2.

    Google Scholar 

  • Mariano, V. (2004) ImageLab: A C++ software package for basic image processing. A Software Project of the Institute of Computer Science, University of the Philippines Los Banos.

  • Monismith, S. G. (2007). Hydrodynamics of coral reefs. Annual Review of Fluid Mechanics, 39, 37–55.

    Article  Google Scholar 

  • Mumby, P. J., & Wabnitz, C. C. (2001). Spatial patterns of aggression, territory size, and harem size in five sympatric Caribbean parrotfish species. Environmental Biology of Fishes, 63, 265–279.

    Article  Google Scholar 

  • Nemeth, R. S. (1998). The effect of natural variation in substrate architecture on the survival of juvenile bicolor damselfish. Environmental Biology of Fishes, 53, 129–141.

    Article  Google Scholar 

  • Pitmann, S. J, Christensen, J. D, Caldow, C., Menza, C., Monaco, M. E. (2007) Predictive mapping of fish species richness across shallow-water seascapes in the Caribbean. Ecological Modelling? 4646 doi:10.1016/j.ecolmodel.2006.12.017.

  • Riegl, B. M., & Purkis, S. J. (2005). Detection of shallow subtidal corals from IKONOS satellite and QTC View (50, 200 kHz) single-beam sonar data (Arabian Gulf; Dubai, UAE). Remote Sensing of Environment, 95(1), 96–114.

    Article  Google Scholar 

  • Roelfsema, C. M., Phinn, S. R., & Dennison, W. C. (2002). Spatial distribution of benthic microalgae on coral reefs determined by remote sensing. Coral Reefs, 21, 264–274. doi:10.1007/s00338-002-0242-9.

    Article  Google Scholar 

  • Sale, P. F., Douglas, W. A., & Doherty, P. J. (1984). Choice of microhabitats by coral reef fishes at settlement. Coral Reefs, 3, 91–99.

    Article  Google Scholar 

  • Srinivasan, M. (2003). Depth distribution of coral reef fishes: the influence of microhabitat structure, settlement, and post-settlement processes. Oecologia, 137, 76–84. doi:10.1007/s00442-003-1320-6.

    Article  Google Scholar 

  • Ticzon, V. S., Mumby, P. J., Samaniego, B. R., Bejarano-Chavarro, S., & David, L. T. (2012). Microhabitat use of juvenile reef fish in Palau. Environmental Biology of Fishes. doi:10.1007/s10641-012-0010-9.

    Google Scholar 

  • Walker, B. K., Jordan, L. K. B., & Spieler, R. E. (2009). Relationship of reef fish assemblages and topographic complexity on southeastern Florida coral reef habitats. Journal of Coastal Research, 25, 39–48. doi:10.2112/SI2153-2005.2111.

    Article  Google Scholar 

  • Wedding, L. M., & Friedlander, A. M. (2008). Determining the Influence of seascape structure on coral reef fishes in Hawaii using a geospatial approach. Marine Geodesy, 31, 246–266. doi:10.1080/01490410802466504.

    Article  Google Scholar 

  • White, W. H., Harborne, A. R., Sotheran, I. S., Walton, R., & Foster-Smith, R. L. (2003). Using an acoustic ground discrimination system to map coral reef benthic classes. International Journal of Remote Sensing, 24(13), 2641–2660.

    Article  Google Scholar 

  • Wilson, S. K., Burgess, S. C., Cheal, A. J., Emslie, M., Fisher, R., Miller, I., Polunin, N. V. C., & Sweatman, H. P. A. (2008). Habitat utilization by coral reef fish: implications for specialists vs. generalists in a changing environment. Journal of Animal Ecology, 77, 220–228.

    Article  Google Scholar 

  • Wilson, S. K., Depczynski, M., Fisher, R., Holmes, T. H., O’Leary, R. A., & Tinkler, P. (2010). Habitat associations of juvenile fish at Ningaloo reef, Western Australia: the importance of coral and algae. PloS One, 5, 1–8.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Dr. Shiela Marcos, Eileen Peñaflor, and David Idip for their invaluable assistance in the conduct of the field work. Funding was provided by the World Bank-Global Environment Facility-Coral Reef Targeted Research-Remote Sensing Working Group, and the Philippine Council for Aquatic and Marine Research and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor S. Ticzon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ticzon, V.S., Foster, G., David, L.T. et al. Delineating optimal settlement areas of juvenile reef fish in Ngederrak Reef, Koror state, Republic of Palau. Environ Monit Assess 187, 4089 (2015). https://doi.org/10.1007/s10661-014-4089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-014-4089-7

Keywords

Navigation