Skip to main content

Advertisement

Log in

Soil respiration, labile carbon pools, and enzyme activities as affected by tillage practices in a tropical rice–maize–cowpea cropping system

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In order to identify the viable option of tillage practices in rice–maize–cowpea cropping system that could cut down soil carbon dioxide (CO2) emission, sustain grain yield, and maintain better soil quality in tropical low land rice ecology soil respiration in terms of CO2 emission, labile carbon (C) pools, water-stable aggregate C fractions, and enzymatic activities were investigated in a sandy clay loam soil. Soil respiration is the major pathway of gaseous C efflux from terrestrial systems and acts as an important index of ecosystem functioning. The CO2–C emissions were quantified in between plants and rows throughout the year in rice–maize–cowpea cropping sequence both under conventional tillage (CT) and minimum tillage (MT) practices along with soil moisture and temperature. The CO2–C emissions, as a whole, were 24 % higher in between plants than in rows, and were in the range of 23.4–78.1, 37.1–128.1, and 28.6–101.2 mg m−2 h−1 under CT and 10.7–60.3, 17.3–99.1, and 17.2–79.1 mg m−2 h−1 under MT in rice, maize, and cowpea, respectively. The CO2–C emission was found highest under maize (44 %) followed by rice (33 %) and cowpea (23 %) irrespective of CT and MT practices. In CT system, the CO2–C emission increased significantly by 37.1 % with respect to MT on cumulative annual basis including fallow. The CO2–C emission per unit yield was at par in rice and cowpea signifying the beneficial effect of MT in maintaining soil quality and reduction of CO2 emission. The microbial biomass C (MBC), readily mineralizable C (RMC), water-soluble C (WSC), and permanganate-oxidizable C (PMOC) were 19.4, 20.4, 39.5, and 15.1 % higher under MT than CT. The C contents in soil aggregate fraction were significantly higher in MT than CT. Soil enzymatic activities like, dehydrogenase, fluorescein diacetate, and β-glucosidase were significantly higher by 13.8, 15.4, and 27.4 % under MT compared to CT. The soil labile C pools, enzymatic activities, and heterotrophic microbial populations were in the order of maize > cowpea > rice, irrespective of the tillage treatments. Environmental sustainability point of view, minimum tillage practices in rice–maize–cowpea cropping system in tropical low land soil could be adopted to minimize CO2–C emission, sustain yield, and maintain soil health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam, G., & Duncan, H. (2001). Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol Biochem, 33, 943–951.

    Article  CAS  Google Scholar 

  • Al-Kaisi, M. M., & Yin, X. (2005). Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn-soybean rotation. J Environ Qual, 34, 437–445.

    Article  CAS  Google Scholar 

  • Amos, B., Arkebauer, T. J., & Doran, J. W. (2005). Soil surface fluxes of greenhouse gases in an irrigated maize-based agroecosystem. Soil Sci Soc Am J, 69, 387–395.

    Article  CAS  Google Scholar 

  • Bajracharya, R. M., Lal, R., & Kimble, J. M. (2000). Diurnal and seasonal CO2–C flux from soil as related to erosion phases in central Ohio. Soil Sci Soc Am J, 64, 286–293.

    Article  CAS  Google Scholar 

  • Balabane, M., & Plante, A. F. (2004). Aggregation and carbon storage in silty soil using physical fractionation techniques. Eur J Soil Sci, 55, 415–427.

    Article  Google Scholar 

  • Barreto, R. C., Madari, B. E., Maddock, J. E. L., Machado, P. L. O. A., Torres, E., Franchini, J., & Costa, A. R. (2009). The impact of soil management on aggregation, carbon stabilization and carbon loss as CO2 in the surface layer of a Rhodic Ferralsol in Southern Brazil. Agric Ecosyst Environ, 132, 243–251.

    Article  CAS  Google Scholar 

  • Bhattacharyya, P., Nayak, A. K., Mohanty, S., Tripathi, R., Shahid, M., Kumar, A., Raja, R., Panda, B. B., Roy, K. S., Neogi, S., Dash, P. K., Shukla, A. K., & Rao, K. S. (2013a). Greenhouse gas emission in relation to labile soil C, N pools and functional microbial diversity as influenced by 39 years long-term fertilizer management in tropical rice. Soil Tillage Res, 129, 93–105.

    Article  Google Scholar 

  • Bhattacharyya, P., Neogi, S., Roy, K. S., Dash, P. K., Tripathi, R., & Rao, K. S. (2013b). Net ecosystem CO2 exchange and carbon cycling in tropical lowland flooded rice ecosystem. Nutr Cycl Agroecosyst, 95, 133–144.

    Article  CAS  Google Scholar 

  • Bhattacharyya, P., Roy, K. S., Neogi, S., Adhya, T. K., Rao, K. S., & Manna, M. C. (2012a). Effects of rice straw and nitrogen fertilization on greenhouse gas emissions and carbon storage in tropical flooded soil planted with rice. Soil Tillage Res, 124, 119–130.

    Article  Google Scholar 

  • Bhattacharyya, P., Roy, K. S., Neogi, S., Chakravorti, S. P., Behera, K. S., Das, K. M., Bardhan, S., & Rao, K. S. (2012b). Effect of long term application of organic amendment on C storage in relation to global warming potential and biological activities in tropical flooded soil planted to rice. Nutr Cycl Agroecosyst, 94, 273–285.

    Article  Google Scholar 

  • Blair, G. J., Lefroy, R. D. B., & Lisle, L. (1995). Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust J Agric Res, 46, 1459–1466.

    Article  Google Scholar 

  • Borie, F., Rubio, R., Rouanet, J. L., Morales, A., Borie, G., & Rojas, C. (2006). Effects of tillage systems on soil characteristics, glomalin and mycorrhizal propagules in a Chilean Ultisol. Soil Tillage Res, 88, 253–261.

    Article  Google Scholar 

  • Bronick, C. J., & Lal, R. (2005). Soil structure and management: a review. Geoderma, 124, 3–22.

    Article  CAS  Google Scholar 

  • Camberdella, C. A., & Elliott, E. T. (1992). Particulate organic matter changes across a grassland cultivation sequence. Soil Sci Soc Am J, 56, 777–783.

    Article  Google Scholar 

  • Casida, L. E., Klein, D. A., & Santoro, T. (1964). Soil dehydrogenase activity. Soil Sci, 98, 371–376.

    Article  CAS  Google Scholar 

  • Curaqueo, G., Miguel, B. J., Acevedo, E., Rubio, R., Cornejo, P., & Borie, F. (2011). Effects of different tillage system on arbuscular mycorrhizal fungal propagules and physical properties in a Mediterranean agroecosystem in central Chile. Soil Tillage Res, 113, 11–18.

    Article  Google Scholar 

  • Diaz, H. F., & Eischeid, J. K. (2007). Disappearing “alpine tundra” Köppen climatic type in the western United States. Geophysical Research Letter, 34, L18707. doi:10.1029/2007GL031253.

    Article  Google Scholar 

  • Drijber, R. A., Doran, J. W., Parkhurst, A. M., & Lyon, D. J. (2000). Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil Biol Biochem, 32, 1419–1430.

    Article  CAS  Google Scholar 

  • Duiker, S. W., Rhoton, F. E., Torrent, J., Smeck, N. E., & Lal, R. (2003). Iron (hydr)oxide crystallinity effects on soil aggregation. Soil Sci Soc Am J, 67, 606–611.

    Article  CAS  Google Scholar 

  • Duxbury, JM (1995) The significance of agricultural greenhouse gas emissions from soil of tropical agroecosystems. In: R. Lal (ed.). Soil management and greenhouse effect. Lewis: Boca Raton, FL. pp. 279–291

  • Eivazi, F., & Tabatabai, M. A. (1988). Glucosidases and galactosidases in soils. Soil Biol Biochem, 20, 601–606.

    Article  CAS  Google Scholar 

  • Fabrizzi, K. P., Rice, C. W., Amado, T. J. C., Fiorin, J., Barbagelata, P., & Melchiori, R. (2009). Protection of soil organic C and N in temperate and tropical soils: effect of native and agroecosystems. Biogeochemistry, 92, 129–143.

    Article  CAS  Google Scholar 

  • Franzluebbers, A. J. (2002). Soil organic matter stratification ratio as an indicator of soil quality. Soil Tillage Res, 66, 95–106.

    Article  Google Scholar 

  • Garcla-orenes, F., Guerrero, C., Roldan, A., Mataix-Solera, J., Cerda, A., Campoy, M., Zornoza, R., Barcenas, G., & Caravaca, F. (2010). Soil microbial biomass and activity under different agricultural management systems in a semiarid Mediterranean agroecosystem. Soil Tillage Res, 109, 110–115.

    Article  Google Scholar 

  • Haynes, R. J., & Swift, R. S. (1990). Stability of soil aggregates in relation to organic constituents and soil water content. J Soil Sci, 41, 73–83.

    Article  CAS  Google Scholar 

  • Helgason, B. L., Walley, F. L., & Germida, J. J. (2010). No-till soil management increases microbial biomass and alters community profiles in soil aggregates. Appl Soil Ecol, 46, 390–397.

    Article  Google Scholar 

  • Hill, P. W., Marshall, C., Harmens, H., Jones, D. L., & Farrar, J. (2004). Carbon sequestration: do N inputs and elevated atmospheric CO2 alter soil solution chemistry and respiratory C losses? Water Air Soil Pollut, 4, 177–186.

    Article  CAS  Google Scholar 

  • Inubushi, K., Brookes, P. C., & Jenkinson, D. S. (1991). Soil microbial biomass C, N and ninhydrin-N in aerobic and anaerobic soils measured by fumigation-extraction method. Soil Biol Biochem, 23, 737–741.

    Article  CAS  Google Scholar 

  • IPCC. (2007). Climate Change 2007: the physical science basis, contribution of Working Group-I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Iqbal, J., Hu, R., Lin, S., Hatano, R., Feng, M., Lu, L., Ahamadou, B., & Du, L. (2009). CO2 emission in a subtropical red paddy soil (Ultisol) as affected by straw and N fertilizer applications: a case study in Southern China. Agric Ecosyst Environ, 131, 292–302.

    Article  CAS  Google Scholar 

  • Jackson, L., Calderson, F. J., Scow, K. L., Steenwerth, K. M., & Rolston, D. E. (2003). Responses of soil microbial processes and community structure to tillage events and implications for soil quality. Geoderma, 114, 305–317.

    Article  CAS  Google Scholar 

  • La Scala, N., Bolonhezi, D., & Pereira, G. T. (2006). Short-term soil CO2 emission after conventional and reduced tillage of a no-till sugarcane area in southern Brazil. Soil Tillage Res, 96, 244–248.

    Article  Google Scholar 

  • Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623–1627.

    Article  CAS  Google Scholar 

  • Manna, M. C., Swarup, A., Wanjari, R. H., Ravankar, H. N., Mishra, B., & Saha, M. N. (2005). Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India. Field Crop Res, 93, 264–280.

    Article  Google Scholar 

  • Parkin, T. B., & Kasper, T. C. (2003). Temperature controls on diurnal carbon dioxide flux: implication for estimating soil carbon loss. Soil Sci Soc Am J, 67, 1763–1772.

    Article  CAS  Google Scholar 

  • Paustian, K., Six, J., Elliott, E. T., & Hunt, H. W. (2000). Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry, 48, 147–163.

    Article  CAS  Google Scholar 

  • Rand, M. C., Greenberg, A. E., Taras, M. J., & Franson, M. A. (1975). Standard methods for the examination of water and waste water. Washington: American Public Health Association.

    Google Scholar 

  • Reicosky, D. C., Lindstrom, M. J., Schumacher, T. E., Lobb, D. E., & Malo, D. D. (2005). Tillage-induced CO2 loss across and eroded landscape. Soil Tillage Res, 81, 183–194.

    Article  Google Scholar 

  • Sainju, U. M., Whitehead, W. F., & Singh, B. P. (2005). Biculture legume-cereal cover crops for enhanced biomass yield and carbon and nitrogen. Agron J, 97, 1403–1412.

    Article  CAS  Google Scholar 

  • Six, J., Elliott, E. T., & Paustian, K. (2000). Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem, 32, 2099–2103.

    Article  CAS  Google Scholar 

  • Six, J., Feller, C., Denef, K., Ogle, S. M., Sa, J. C. D., & Albrecht, A. (2002). Soil organic matter, biota and aggregation in temperate and tropical soils—effects of no-tillage. Agronomie, 22, 755–775.

    Article  Google Scholar 

  • Smith, K. A., Ball, T., Conen, F., Dobbie, K. E., Massheder, J., & Rey, A. (2003). Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci, 54, 779–791.

    Article  Google Scholar 

  • Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass carbon. Soil Biol Biochem, 19, 703–707.

    Article  CAS  Google Scholar 

  • Von Lutzow, M., Kogel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., & Flessa, H. (2006). Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci, 57, 426–445.

    Article  Google Scholar 

  • Witt, C., Gaunt, J. L., Galicia, C. C., Ottow, J. C. G., & Neue, H. U. (2000). A rapid chloroform fumigation–extraction method for measuring soil microbial biomass carbon and nitrogen in flooded rice soils. Biol Fertil Soils, 30, 510–519.

    Article  CAS  Google Scholar 

  • Zhang, H., Wang, X., Feng, Z., Pang, J., Lu, F., Ouyang, Z., Zheng, H., Liu, W., & Hui, D. (2011). Soil temperature and moisture sensitivities of soil CO2 efflux before and after tillage in a wheat field of Loess Plateau, China. J Environ Sci, 23, 79–86.

    Article  CAS  Google Scholar 

  • Zhang, S., Li, Q., Zhang, X., Wei, K., Chen, L., & Liang, W. (2012). Effects of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China. Soil Tillage Res, 124, 196–202.

    Article  Google Scholar 

Download references

Acknowledgments

The work has been partially supported by the grant of ICAR-NAIP, Component-4 (2031), “Soil organic carbon dynamics vis-à-vis anticipatory climatic changes and crop adaptation strategies”, NICRA and CRRI. Part of the findings is the Ph.D. work of Mr. S. Neogi. The valuable guidance of Dr. D.C. Uprety, Dr. V.R. Rao, Dr. S.N. Singh, Dr. Sudhir Kochhar, and Dr. T.K. Adhya is acknowledged. Technical support was provided by the technical staff of the division of Crop Production CRRI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neogi, S., Bhattacharyya, P., Roy, K.S. et al. Soil respiration, labile carbon pools, and enzyme activities as affected by tillage practices in a tropical rice–maize–cowpea cropping system. Environ Monit Assess 186, 4223–4236 (2014). https://doi.org/10.1007/s10661-014-3693-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3693-x

Keywords

Navigation