Skip to main content
Log in

Water pollution of Sabarmati River—a Harbinger to potential disaster

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

River Sabarmati is one of the biggest and major river of Gujarat that runs through two major cities of Gujarat, Gandhinagar and Ahmedabad and finally meets the Gulf of Khambhat (GoK) in the Arabian Sea. A study was conducted to evaluate the water quality of this river, as it could possibly be one of the major sources for filling up Kalpasar, the proposed man-made freshwater reservoir supposed to be the biggest one in the world. A total of nine sampling stations were established covering 163 km stretch of the river from upstream of Gandhinagar city to Vataman near Sabarmati estuary. Physicochemical (temprature, pH, salinity, chloride, total dissolved solids, turbidity, dissolved oxygen, biochemical oxygen demand, phenol, and petroleum hydrocarbons), biological (phytoplankton), and microbiological (total and selective bacterial count) analyses indicated that the river stretch from Ahmedabad-Vasana barriage to Vataman was highly polluted due to perennial waste discharges mainly from municipal drainage and industries. An implementation of sustainable management plan with proper treatment of both municipal and industrial effluents is essential to prevent further deterioration of the water quality of this river.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • APHA Standard Method for Examination of water and waste water (2005) 21st Ed. APHA, AWWA & WED, Washington.

  • Bere, T., & Tundisi, J. G. (2011). Applicability of borrowed diatom-based water quality assessment indices in streams around São Carlos-SP. Brazil Hydrobiologia, 673, 179–192. doi:10.1007/s10750-011-0772-7.

    Article  CAS  Google Scholar 

  • Biligrami, K. S. (1988). Biological monitoring of rivers, problems and prospect in India. Aquatic Ectovicology, 245–250.

  • Bhutiani, R., & Khanna, D. R. (2007). Ecological study of river Suswa: Modeling DO and BOD. Environmental Monitoring and Assessment, 125, 183–195. doi:10.1007/510661-006-9251-4.

    Article  CAS  Google Scholar 

  • Bordalo, A., Nilsumranchit, W., & Chalermwat, K. (2001). Water quality and uses of the Bangpakong River (Eastern Thailand). Water Reserch, 35, 3635–3642.

    Article  CAS  Google Scholar 

  • Brown, R. M., McClelland, N. I., Deininger, R. A., & Tozer, R. G. (1970). Journal of Water and Sewage Works, 117, 339.

    Google Scholar 

  • Celik, M. (2002). Water quality assessment and investigation of the relationship between the River Delice and the aquifer systems in the vicinity of Yerkoy (Yozgat, Turkey). Environmental Geology, 42, 690–700.

    Google Scholar 

  • Datta, P. S. (1983). Trend analysis of water quality in the Sabarmati river at Ahmedabad for a decade (1969–1978). Dissolved loads of River and Surface water quantity/quality relationship (Proceedings of the Hamburg Symposium, August 1983). IAHS Publ., No. 141.

  • Davi, M. L., & Gnudi, F. (1999). Phenolic compounds in surface water. Water Reserch, 33, 3213–3219.

    Article  CAS  Google Scholar 

  • Desikachary, T. V. (1986–1989). Atlas of Diatoms- Marine diatoms of the Indian Ocean region Vol.I-VI. Madras Science Foundation, Madras, (Plate 1–809).

  • Dojlido, J., Raniszewski, J., & Woyciechowska, J. (1994). Water quality index applied to rivers in the Vistula river basin in Poland. Environtal Monitering and Assessment, 33, 33–42.

    Article  CAS  Google Scholar 

  • Grasshoff, K., Kremling, K., & Ehrhardt, M. (1999). Methods of Seawater Analysis third edition, Grasshoff Willey-VCH. doi 10.1002/9783527613984.

  • Hassan, M. S., Salem, F. B., & El-salam, N. A. (1987). Colorimetric determination of phenol in water samples. Analytical Letters, 20, 677–687. doi:10.1080/00032718708062921.

    Article  CAS  Google Scholar 

  • He, B., Oki, T., Kanae, S., Mouri, G., Kodama, K., Komori, D., et al. (2009). Integrated biogeochemical modelling of nitrogen load from anthropogenic and natural sources in Japan. Ecological Modeling, 220, 2325–2334. doi:10.1016/j.ecomodel.2009.05.018.

    Article  CAS  Google Scholar 

  • He, B., Kanae, S., Oki, T., Hirabayashi, Y., Yamashiki, Y., & Takara, K. (2011). Assessment of global nitrogen pollution in rivers using an integrated biogeochemical modeling framework. Water Research, 45, 2573–2586. doi:10.1016/j.waters.2011.02.011.

    Article  CAS  Google Scholar 

  • IS: Tolerance Limits for Inland Surface Waters Subject to Pollution (IS-1055: 1991), ISI New Delhi, India (1991).

  • IS: Tolerance Limits for Inland Surface Waters Subject to Pollution (IS-2296: 1974), ISI New Delhi, India (1974).

  • Jain, S. K., Agarwal, P. K., & Singh, V. P. (2007). Hydrology and water resources of India. Dordrecht, The Netherlands: Springer. 13-978-1-4020-5180-7, e-book.

    Google Scholar 

  • Kannel, P. R., Lee, S., Lee, Y. S., Kanel, S. R., & Khan, S. P. (2007). Application of water quality indices and dissolved oxygen as indicators for river water classification and urban impact assessment. Environmental Monitoring and Assessesment, 132, 93–110. doi:10.1007/s1066/-006-9505-1.

    Article  CAS  Google Scholar 

  • Karydis, M. (2009). Eutrophication assessment of coastal waters based on indicators: A Literature review. Global NEST Journal, 11, 373–390.

    Google Scholar 

  • Kinnear, P. R., & Gray, C. D. (2000). Spss for Windows Made Simple: Release 10. Psychology Press Ltd, - Computers - 416 pages.

  • Kumar, R. N., Solanki, R. H., & Kumar, J. I. N. (2011). Assessment of spatial and temporal Variation in physic-chemical properties of water in river Sabarmati and Kharicut canel at Ahmedabad, Gujarat. Nat Environ Poll Techno, 10, 147–154.

    CAS  Google Scholar 

  • Li, S., Gu, S., Tana, X., & Zhang, Q. (2009). Water quality in the upper Han River basin, China: The impacts of land use/land cover in riparian buffer zone. Journal Hazard Mat, 165, 317–324. doi:10.1016/j.jhazmat.2008.09.123.

    Article  CAS  Google Scholar 

  • Mahapatra, S. S., Sahu, M., Patel, R. K., & Panda, B. N. (2012). Prediction of Water Quality Using Principal Component Analysis. Water Qual Expo Health, 4, 93–104. doi:10.1007/s12403-012-0068-9.

    Article  CAS  Google Scholar 

  • Meybeck, M., & Helmer, R. (1989). The quality of rivers: from pristine stage to global pollution. Global and Planetary Change Journal, 75, 283–309. doi:10.1016/0921-8181(89)90007-6.

    Google Scholar 

  • Mishra, A. (2010). Assessment of Water Quality Using Principal Component Analysis: A Case Study of the River Ganges, Journal of Water Chemistry and Technology, 227–234.

  • Mishra, A., Bhatt, V. D., Sevak, N., Shah, P., Patel, K., & Patel, C. (2010). Comparative study of Physico-chemical and microbiological parameters on lotic and ground water in selected outlaying area of central Gujarat. Journal of Chemical and Phermaceautical Research, 2, 174–177.

    CAS  Google Scholar 

  • Moskovchenko, D. V., Babushkin, A. G., & Artamonova, G. (2009). Surface water Quality assessment of the Vatinsky Egan River catchment, West Siberia. Environtal Monitoring and Assessment, 148, 359–368. doi:10.1007/s10661-008-0166-0.

    Article  CAS  Google Scholar 

  • Odume, O. N., & Muller, W. J. (2011). Diversity and structure of Chironomidae communities in relation to water quality differences in the Swartkops River. Physical Chemistry of Earth, 36, 929–938. doi:10.1016/j.pce.2011.07.063.

    Article  Google Scholar 

  • Olufemi, A. G., Tunde, E. O., & Temitope, A. O. (2011). Determination of total petroleum hydrocarbons and heavy metals in surface water and sediment of Ubeji River, Warri, Nigeria. Bioremediation, Biodiversity and Bioavailability, 5, 46–51.

    Google Scholar 

  • Panchani, M. H., & Pandya, M. J. (2013). Identification and quantification of non-point sources of pollution to Sabarmati River, Ahmedabad. International Journal of Engineering Research, 2, 71–75.

    Google Scholar 

  • Pescem, S. F., & Wunderlin, D. A. (2000). Use of water quality indices to verify the Impact of Coardoba City (Argentina) on Suquoia River. Water Research, 34, 2915–2926. doi:10.1016/50043-1354(00)00036-1.

    Article  Google Scholar 

  • Phiri, O., Mumba, P., Moyo, B. H. Z., & Kadewa, W. (2005). Assessment of the impact of industrial effluents on water quality of receiving rivers in urban areas of Malawi. International Journal of Environmental Science and Technology, 2(3), 237–244.

    Article  CAS  Google Scholar 

  • Priyadarshi, N. (2009). Ganga river pollution in India- A brief report, American Chronicle, July 8, (http://www.americanchronicle.com/articles/view/109078).

  • Rodier, J. (1984). L’analyse de l’eau: eaux naturelles, eaux résiduaires, eau de mer, 7e Edition. Paris: Dunod, Bordas.

    Google Scholar 

  • Saha, N. C., Bhunia, F., & Kaviraj, A. (1999). Toxicity of phenol to fish and aquatic ecosystems. Bulletin of Environmental Contamination and Toxicology, 63, 198–202.

    Article  Google Scholar 

  • Saksena, D. N., Garg, R. K., & Rao, R. J. (2008). Water quality and pollution status of Chambal river in National Chambal sanctuary. M P J Environ Biol, 29, 701–710.

    CAS  Google Scholar 

  • Sampat, P. (1996). The river Ganges’ long decline. World Watch, 9, 24.

    Google Scholar 

  • Status of Water Quality in India (2007) pp. 52–54.

  • Suthar, S., Sharma, J., Chabukdhara, M., & Nema, A. K. (2010). Water quality assessment of river Hindon at Ghaziabad, India: impact of industrial and urban wastewater. Environmental Monitoring and Assessment, 165, 103–112. doi:10.1007/s10661-009-0930-9.

    Article  CAS  Google Scholar 

  • Tomas, C. R. (1998). Identifying Marine Phytoplankton. Edited by Carmelo R. Tomas. Published by Academic Press. 858.

  • Trobajo, R., Clavero, E., Chepurnov, V. A., Sabbe, K., Mann, D. G., Ishihara, S., et al. (2009). Morphological, genetic and mating diversity within the widespread bioindicator Nitzschia palea (Bacillariophyceae). Phycologia, 48, 443–459. doi:10.2216/08-69.1.

    Article  Google Scholar 

  • Vieira, J. S., Pires, J. C. M., Martins, F. G., Vilar, V. J. P., Boaventura, R. A. R., & Botelho, C. M. S. (2012). Surface Water Quality Assessment of Lis River Using Multivariate Statistical Methods. Water Air Soil Pollution, 223, 5549–5561. doi:10.1007/S11270-012-1267-5.

    Article  CAS  Google Scholar 

  • Villalobos, M., Avila-Forcada, A. P., & Gutierrez-Ruiz, M. E. (2008). An improved gravimetric method to determine total petroleum hydrocarbon in contaminated soils. Water Air Soil Pollution, 194, 151–161. doi:10.1007/s11270-008-9704-1.

    Article  CAS  Google Scholar 

  • WHO (2006). Guidelines for Drinking-Water Quality, third ed., vol.1 –Recommendations. Word Health Organ.

Download references

Acknowledgments

We sincerely thank Professor B. Jha, Discipline Coordinator, Marine Biotechnology, and Ecology Discipline for his encouragement and timely support for carrying out this work. Dr. N. Chowdhury, University of Delaware, Newark, USA, and Prof. Purnimaben Mehta, Retired Prof & Head, Department of English, Bhavnagar University, Bhavnagar, are gratefully acknowledged for improving the language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soumya Haldar, Subir Kumar Mandal, Sangita Goel or K. H. Mody.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haldar, S., Mandal, S.K., Thorat, R.B. et al. Water pollution of Sabarmati River—a Harbinger to potential disaster. Environ Monit Assess 186, 2231–2242 (2014). https://doi.org/10.1007/s10661-013-3532-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3532-5

Keywords

Navigation