Skip to main content

Advertisement

Log in

Biocomplementation of SVE to achieve clean-up goals in soils contaminated with toluene and xylene

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil vapor extraction (SVE) and bioremediation (BR) are two of the most common soil remediation technologies. Their application is widespread; however, both present limitations, namely related to the efficiencies of SVE on organic soils and to the remediation times of some BR processes. This work aimed to study the combination of these two technologies in order to verify the achievement of the legal clean-up goals in soil remediation projects involving seven different simulated soils separately contaminated with toluene and xylene. The remediations consisted of the application of SVE followed by biostimulation. The results show that the combination of these two technologies is effective and manages to achieve the clean-up goals imposed by the Spanish Legislation. Under the experimental conditions used in this work, SVE is sufficient for the remediation of soils, contaminated separately with toluene and xylene, with organic matter contents (OMC) below 4 %. In soils with higher OMC, the use of BR, as a complementary technology, and when the concentration of contaminant in the gas phase of the soil reaches values near 1 mg/L, allows the achievement of the clean-up goals. The OMC was a key parameter because it hindered SVE due to adsorption phenomena but enhanced the BR process because it acted as a microorganism and nutrient source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albergaria, J. T., Alvim-Ferraz, M. D. M., & Delerue-Matos, C. (2008). Soil vapor extraction in sandy soils: influence of airflow rate. Chemosphere, 73, 1557–1561.

    Article  CAS  Google Scholar 

  • Albergaria, J. T., Alvim-Ferraz, M. D. M., & Delerue-Matos, C. (2012). Remediation of sandy soils contaminated with hydrocarbons and halogenated hydrocarbons by soil vapour extraction. Journal of Environmental Management, 104, 195–201.

    Article  CAS  Google Scholar 

  • Albergaria, J. T., Alvim-Ferraz, M. D. M., & Delerue-Matos, M. C. F. (2010). Estimation of pollutant partition in sandy soils with different water contents. Environmental Monitoring and Assessment, 171, 171–180.

    Article  CAS  Google Scholar 

  • Alvim-Ferraz, M. C. M., Albergaria, J. T., & Delerue-Matos, C. (2006). Soil remediation time to achieve clean-up goals I: influence of soil water content. Chemosphere, 62, 853–860.

    Article  CAS  Google Scholar 

  • Atlas, R. M., & Bartha, R. (1998). Microbial ecology: fundamentals and applications (4th ed.). Redwood City: Benjamin Cummings.

    Google Scholar 

  • Beskoski, V. P., Gojgic-Cvijovic, G., Milic, J., Ilic, M., Miletic, S., Solevic, T., et al. (2011). Ex situ bioremediation of a soil contaminated by mazut (heavy field experiment. Chemosphere, 83, 34–40.

    Article  CAS  Google Scholar 

  • Braddock, J. F., Ruth, M. L., Catterall, P. H., Walworth, J. L., & McCarthy, K. A. (1997). Enhancement and inhibition of microbial activity in hydrocarbon-contaminated arctic soils: implications for nutrient-amended bioremediation. Environmental Science and Technology, 31, 2078–2084.

    Article  CAS  Google Scholar 

  • Cameotra, S. S., & Makkar, R. S. (2010). Biosurfactant-enhanced bioremediation of hydrophobic pollutants. Pure and Applied Chemistry, 82, 97–116.

    Article  CAS  Google Scholar 

  • Carroll, K. C., Oostrom, M., Truex, M. J., Rohay, V. J., & Brusseau, M. L. (2012). Assessing performance and closure for soil vapor extraction: integrating vapor discharge and impact to groundwater quality. Journal of Contaminant Hydrology, 128, 71–82.

    Article  CAS  Google Scholar 

  • El Fantroussi, S., & Agathos, S. N. (2005). Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Current Opinion in Microbiology, 8, 268–275.

    Article  CAS  Google Scholar 

  • Gentry, T. J., Rensing, C., & Pepper, I. L. (2004). New approaches for bioaugmentation as a remediation technology. Critical Reviews in Environmental Science and Technology, 34, 447–494.

    Article  CAS  Google Scholar 

  • Jacques, R. J. S., da Silva, K. J., Bento, F. M., & Camargo, F. A. D. (2010). Bioremediation of a soil contaminated with anthracene under different chemical and physical conditions. Ciência Rural, 40, 310–317.

    CAS  Google Scholar 

  • Jiao, L. N., Zhao, Y. S., Qu, Z. H., & Wang, B. (2011). Study on influencing factors on removal of diesel oil from unsaturated zone by soil vapor extraction. In Q. Luo & Y. Z. Wang (Eds.), Advanced materials science and technology, Pts 1–2 (pp. 401–405). Stafa, Zurich: Trans Tech Publications Ltd.

    Google Scholar 

  • Kaleris, V., & Croise, J. (1997). Estimation of cleanup time for continuous and pulsed soil vapor extraction. Journal of Hydrology, 194, 330–356.

    Article  CAS  Google Scholar 

  • Kelly, D. P., Baker, S. C., Trickett, J., Davey, M., & Murrell, J. C. (1994). Methanesulfonate utilization by a novel methylotrophic bacterium involves an unusual monooxygenase. Microbiology, 140, 1419–1426.

    Article  CAS  Google Scholar 

  • Kirtland, B. C., & Aelion, C. M. (2000). Petroleum mass removal from low permeability sediment using air sparging/soil vapor extraction: impact of continuous or pulsed operation. Journal of Contaminant Hydrology, 41, 367–383.

    Article  CAS  Google Scholar 

  • Macci, C., Doni, S., Peruzzi, E., Ceccanti, B., & Masciandaro, G. (2012). Bioremediation of polluted soil through the combined application of plants, earthworms and organic matter. Journal of Environmental Monitoring, 14, 2710–2417.

    Article  CAS  Google Scholar 

  • Menendez-Vega, D., Gallego, J. L. R., Pelaez, A. I., de Cordoba, G. F., Moreno, J., Munoz, D., et al. (2007). Engineered in situ bioremediation of soil and groundwater polluted with weathered hydrocarbons. European Journal of Soil Biology, 43, 310–321.

    Article  CAS  Google Scholar 

  • Moliterni, E., Rodriguez, L., Fernandez, F. J., & Villasenor, J. (2012). Feasibility of different bioremediation strategies for treatment of clayey and silty soils recently polluted with diesel hydrocarbons. Water, Air, and Soil Pollution, 223, 2473–2482.

    Article  CAS  Google Scholar 

  • Qin, C. Y., Zhao, Y. S., Zheng, W., & Li, Y. S. (2010). Study on influencing factors on removal of chlorobenzene from unsaturated zone by soil vapor extraction. Journal of Hazardous Materials, 176, 294–299.

    Article  CAS  Google Scholar 

  • Qin, X., Tang, J. C., Li, D. S., & Zhang, Q. M. (2012). Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline-alkaline soil. Letters in Applied Microbiology, 55, 210–217.

    Article  CAS  Google Scholar 

  • Soares, A. A., Albergaria, J. T., Domingues, V. F., Alvim-Ferraz, M. D. M., & Delerue-Matos, C. (2010). Remediation of soils combining soil vapor extraction and bioremediation: benzene. Chemosphere, 80, 823–828.

    Article  CAS  Google Scholar 

  • Soares, A. A., Pinho, M. T., Albergaria, J. T., Domingues, V., Alvim-Ferraz, M. D. M., De Marco, P., et al. (2012). Sequential application of soil vapor extraction and bioremediation processes for the remediation of ethylbenzene-contaminated soils. Water, Air, and Soil Pollution, 223, 2601–2609.

    Article  CAS  Google Scholar 

  • Suthersan, S. S. (1999). Soil vapor extraction. In S. S. Suthersan (Ed.), Remediation engineering: design concepts (pp. 27–88). Boca Raton: Lewis Publisher Inc.

    Google Scholar 

  • Environmental Protection Agency (USEPA). (1997). Analysis of selected enhancements for soil vapor extraction. Washington, DC: Office of Solid Waste and Emergency Response.

    Google Scholar 

  • United States Environmental Protection Agency (USEPA). (2010). Superfund Remedy Report. Washington, D.C.: USEPA.

    Google Scholar 

  • Yin, F. X., Zhang, S. T., Zhao, X., Feng, K., & Lin, Y. S. (2011). Removal of volatile organic compounds in soils by soil vapor extraction (SVE). Environmental Science and Technology, 32, 1454–1461.

    CAS  Google Scholar 

  • Yoon, H., Valocchi, A. J., & Werth, C. J. (2003). Modeling the influence of water content on soil vapor extraction. Vadose Zone Journal, 2, 368–381.

    CAS  Google Scholar 

  • Zhang, Q., Wang, B. C., Cao, Z. Y., & Yu, Y. L. (2012). Plasmid-mediated bioaugmentation for the degradation of chlorpyrifos in soil. Journal of Hazardous Materials, 221, 178–184.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Tomás Albergaria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soares, A.A., Pinho, M.T., Albergaria, J.T. et al. Biocomplementation of SVE to achieve clean-up goals in soils contaminated with toluene and xylene. Environ Monit Assess 185, 8429–8438 (2013). https://doi.org/10.1007/s10661-013-3184-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3184-5

Keywords

Navigation