Skip to main content

Advertisement

Log in

Role of meteorology in seasonality of air pollution in megacity Delhi, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The winters in megacity Delhi are harsh, smoggy, foggy, and highly polluted. The pollution levels are approximately two to three times those monitored in the summer months, and the severity is felt not only in the health department but also in the transportation department, with regular delays at airport operations and series of minor and major accidents across the road corridors. The impacts felt across the city are both manmade (due to the fuel burning) and natural (due to the meteorological setting), and it is hard to distinguish their respective proportions. Over the last decade, the city has gained from timely interventions to control pollution, and yet, the pollution levels are as bad as the previous year, especially for the fine particulates, the most harmful of the criteria pollutants, with a daily 2009 average of 80 to 100 μg/m3. In this paper, the role of meteorology is studied using a Lagrangian model called Atmospheric Transport Modeling System in tracer mode to better understand the seasonality of pollution in Delhi. A clear conclusion is that irrespective of constant emissions over each month, the estimated tracer concentrations are invariably 40% to 80% higher in the winter months (November, December, and January) and 10% to 60% lower in the summer months (May, June, and July), when compared to annual average for that year. Along with monitoring and source apportionment studies, this paper presents a way to communicate complex physical characteristics of atmospheric modeling in simplistic manner and to further elaborate linkages between local meteorology and pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali, K., Momin, G. A., Tiwari, S., Safai, P. D., Chate, D. M., & Rao, P. S. P. (2004). Fog and precipitation chemistry at Delhi, North India. Atmospheric Environment, 38, 4215–4222.

    Article  CAS  Google Scholar 

  • Aneja, V. P., Agarwal, A., Roelle, P. A., Phillips, S. B., Tong, Q., Watkins, N., et al. (2001). Measurements and analysis of criteria pollutants in New Delhi, India. Environment International, 27, 35–42.

    Article  CAS  Google Scholar 

  • Arndt, R. L., Carmichael, G. R., & Roorda, J. M. (1998). Seasonal source–receptor relationships in Asia. Atmospheric Environment, 32, 1397–1406.

    Article  CAS  Google Scholar 

  • Badami, M. G. (2005). Transport and urban air pollution in India. Environmental Management, 36, 195–204.

    Article  Google Scholar 

  • Calori, G., & Carmichael, G. R. (1999). An urban trajectory model for sulfur in Asian megacities: model concepts and preliminary application. Atmospheric Environment, 33, 3109–3117.

    Article  CAS  Google Scholar 

  • Carmichael, G. R., Sakurai, T., Streets, D., Hozumi, Y., Ueda, H., Park, S. U., et al. (2008). MICS-Asia II: the model intercomparison study for Asia Phase II methodology and overview of findings. Atmospheric Environment, 42, 3468–3490.

    Article  CAS  Google Scholar 

  • Chowdhury, Z., Zheng, M., Schauer, J. J., Sheesley, R. J., Salmon, L. G., Cass, G. R., et al. (2007). Speciation of ambient fine organic carbon particles and source apportionment of PM2.5 in Indian cities. Journal of Geophysical Research, 112, D15303.

    Article  Google Scholar 

  • Cogliani, E. (2001). Air pollution forecast in cities by an air pollution index highly correlated with meteorological variables. Atmospheric Environment, 35, 2871–2877.

    Article  CAS  Google Scholar 

  • CPCB. (2010). Central Pollution Control Board. New Delhi: Government of India.

    Google Scholar 

  • DTC. (2010). Largest CNG-based fleet in the world. New Delhi: Delhi Transport Corporation.

    Google Scholar 

  • DTE. (2002). The Supreme Court not to budge on CNG issue. New Delhi: Down to Earth Magazine.

    Google Scholar 

  • Dubey, M. (2009). Delhi is India’s Asthma capital. New Delhi: Mail Today. March 1, 2009.

    Google Scholar 

  • Garg, A., Shukla, P. R., & Kapshe, M. (2006). The sectoral trends of multigas emissions inventory of India. Atmospheric Environment, 40, 4608–4620.

    Article  CAS  Google Scholar 

  • Gómez-Perales, J. E., Colvile, R. N., Fernández-Bremauntz, A. A., Gutiérrez-Avedoy, V., Páramo-Figueroa, V. H., Blanco-Jiménez, S., et al. (2007). Bus, minibus, metro inter-comparison of commuters’ exposure to air pollution in Mexico City. Atmospheric Environment, 41, 890–901.

    Article  Google Scholar 

  • Gurjar, B. R., & Lelieveld, J. (2005). New directions: megacities and global change. Atmospheric Environment, 39, 391–393.

    Article  CAS  Google Scholar 

  • Gurjar, B. R., van Aardenne, J. A., Lelieveld, J., & Mohan, M. (2004). Emission estimates and trends (1990–2000) for megacity Delhi and implications. Atmospheric Environment, 38, 5663–5681.

    Article  CAS  Google Scholar 

  • Gurjar, B. R., Butler, T. M., Lawrence, M. G., & Lelieveld, J. (2008). Evaluation of emissions and air quality in megacities. Atmospheric Environment, 42, 1593–1606.

    Article  CAS  Google Scholar 

  • Guttikunda, S.K. (2009). Air quality management in Delhi, India: Then, now, and next. In: UrbanEmissions.Info (Ed.), SIM-air Working Paper Series, 22–2009, New Delhi, India.

  • Guttikunda, S. K., Thongboonchoo, N., Arndt, R. L., Calori, G., Carmichael, G. R., & Streets, D. G. (2001). Sulfur deposition in Asia: seasonal behavior and contributions from various energy sectors. Water Air and Soil Pollution, 131, 383–406.

    Article  CAS  Google Scholar 

  • Guttikunda, S. K., Carmichael, G. R., Calori, G., Eck, C., & Woo, J.-H. (2003). The contribution of megacities to regional sulfur pollution in Asia. Atmospheric Environment, 37, 11–22.

    Article  CAS  Google Scholar 

  • Heffter, J.L. (1983). Branching atmospheric trajectory (BAT) model, NOAA Tech. Memo. ERL ARL-121, Air Resources Laboratory, Rockville, MD USA.

  • Hidy, G. M., & Pennell, W. T. (2010). Multipollutant air quality management. Journal of the Air and Waste Management Association, 60, 645–674.

    Article  CAS  Google Scholar 

  • Holloway, T., Levy Ii, H., & Carmichael, G. (2002). Transfer of reactive nitrogen in Asia: development and evaluation of a source-receptor model. Atmospheric Environment, 36, 4251–4264.

    Article  CAS  Google Scholar 

  • Jiang, F., Wang, T., Wang, T., Xie, M., & Zhao, H. (2008). Numerical modeling of a continuous photochemical pollution episode in Hong Kong using WRF-chem. Atmospheric Environment, 42, 8717–8727.

    Article  CAS  Google Scholar 

  • Johnson, T. M., Guttikunda, S. K., Wells, G., Bond, T., Russell, A., West, J., et al. (2011). Handbook on particulate pollution source apportionment techniques. ESMAP publication series. Washington DC: The World Bank.

    Google Scholar 

  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77, 437–471.

    Article  Google Scholar 

  • Kandlikar, M. (2007). Air pollution at a hotspot location in Delhi: detecting trends, seasonal cycles and oscillations. Atmospheric Environment, 41, 5934–5947.

    Article  CAS  Google Scholar 

  • Kandlikar, M., & Ramachandran, G. (2000). The causes and consequences of particulate air pollution in urban India: a synthesis of the science. Annual Review of Energy and the Environment, 25, 629–684.

    Article  Google Scholar 

  • Mohan, M., & Kandya, A. (2007). An analysis of the annual and seasonal trends of air quality index of Delhi. Environmental Monitoring and Assessment, 131, 267–277.

    Article  CAS  Google Scholar 

  • Narain, U., & Bell, R. (2005). Who changed Delhi’s air? The roles of the court and the executive in environmental policymaking, discussion paper series—RFF DP 05–48. Washington DC: Resources for the Future.

    Google Scholar 

  • NASA. (2008). Fires in the Northwest India, "natural hazards". USA: NASA Earth Observatory.

    Google Scholar 

  • Qian, W., Tang, X., & Quan, L. (2004). Regional characteristics of dust storms in China. Atmospheric Environment, 38, 4895–4907.

    Article  CAS  Google Scholar 

  • Reddy, M. S., & Venkataraman, C. (2002). Inventory of aerosol and sulphur dioxide emissions from India: I—Fossil fuel combustion. Atmospheric Environment, 36, 677–697.

    Article  CAS  Google Scholar 

  • Reynolds, C. C. O., & Kandlikar, M. (2008). Climate impacts of air quality policy: switching to a natural gas-fueled public transportation system in New Delhi. Environmental Science & Technology, 42, 5860–5865.

    Article  CAS  Google Scholar 

  • SEPB (2010). The Air Pollution Forecasting System for Shanghai Expo 2010. Shanghai Environmental Protection Bureau, Supported by US EPA’s AirNOW International Program, Shanghai, China

  • Shah, J., Nagpal, T., Johnson, T., Amann, M., Carmichael, G., Foell, W., et al. (2000). Integrated analysis for acid rain in Asia: policy implications and results of RAINS-ASIA model. Annual Review of Energy and the Environment, 25, 339–375.

    Article  Google Scholar 

  • Sharma, S. K., Datta, A., Saud, T., Saxena, M., Mandal, T. K., Ahammed, Y. N., et al. (2010). Seasonal variability of ambient NH3, NO, NO2 and SO2 over Delhi. Journal of Environmental Sciences, 22, 1023–1028.

    Article  CAS  Google Scholar 

  • SoE-Delhi. (2010). State of the environment report for the National Capital Region of Delhi. New Delhi: Government of Delhi.

    Google Scholar 

  • Streets, D. G., Guttikunda, S. K., & Carmichael, G. R. (2000). The growing contribution of sulfur emissions from ships in Asian waters, 1988–1995. Atmospheric Environment, 34, 4425–4439.

    Article  CAS  Google Scholar 

  • Streets, D. G., Fu, J. S., Jang, C. J., Hao, J., He, K., Tang, X., et al. (2007). Air quality during the 2008 Beijing Olympic Games. Atmospheric Environment, 41, 480–492.

    Article  CAS  Google Scholar 

  • Tandon, A., Yadav, S., & Attri, A. K. (2010). Coupling between meteorological factors and ambient aerosol load. Atmospheric Environment, 44, 1237–1243.

    Article  CAS  Google Scholar 

  • UNEP. (2009). Environmental assessment of 2010 Beijing Olympics Games. Bangkok: UNEP.

    Google Scholar 

  • UN-HABITAT. (2008). State of the world’s cities 2008/2009—harmonious Cities. Nairobi: UN-HABITAT.

    Google Scholar 

  • Zhao, L., Wang, X., He, Q., Wang, H., Sheng, G., Chan, L. Y., et al. (2004). Exposure to hazardous volatile organic compounds, PM10 and CO while walking along streets in urban Guangzhou, China. Atmospheric Environment, 38, 6177–6184.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper has not been subjected for internal peer and policy review of the Indian agencies and therefore does not necessarily reflect their views. The analysis and views expressed in this report are entirely those of the authors. No official endorsement should be inferred. Second author acknowledges support received from the Max Planck Society, Munich, and the Max Planck Institute for Chemistry, Mainz, Germany, through the Max Planck Partner Group for Megacities and Global Change established at Indian Institute of Technology Roorkee, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarath K. Guttikunda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guttikunda, S.K., Gurjar, B.R. Role of meteorology in seasonality of air pollution in megacity Delhi, India. Environ Monit Assess 184, 3199–3211 (2012). https://doi.org/10.1007/s10661-011-2182-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2182-8

Keywords

Navigation