Skip to main content
Log in

Geometrical Structure of Two-Dimensional Crystals with Non-Constant Dislocation Density

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We outline mathematical methods which seem to be necessary in order to discuss crystal structures with non-constant dislocation density tensor (ddt) in some generality. It is known that, if the ddt is constant (in space), then material points can be identified with elements of a certain Lie group, with group operation determined in terms of the ddt—the dimension of the Lie group equals that of the ambient space in which the body resides, in that case. When the ddt is non-constant, there is also a relevant Lie group (given technical assumptions), but the dimension of the group is strictly greater than that of the ambient space. The group acts on the set of material points, and there is a non-trivial isotropy group associated with the group action. We introduce and discuss the requisite mathematical apparatus in the context of Davini’s model of defective crystals, and focus on a particular case where the ddt is such that a three dimensional Lie group acts on a two dimensional crystal state—this allows us to construct corresponding discrete structures too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Davini, C.: A proposal for a continuum theory of defective crystals. Arch. Ration. Mech. Anal. 96, 295–317 (1986). doi:10.1007/BF00251800

    Article  MathSciNet  MATH  Google Scholar 

  2. Green, A.E., Adkins, J.E.: Large Elastic Deformations. Clarendon, Oxford (1970)

    MATH  Google Scholar 

  3. Parry, G.P., Sigrist, R.: Reconciliation of local and global symmetries for a class of crystals with defects. J. Elast. 107, 81–104 (2012). doi:10.1007/s10659-011-9342-5

    Article  MathSciNet  MATH  Google Scholar 

  4. Nicks, R., Parry, G.P.: On symmetries of crystals with defects related to a class of solvable groups \((S_{1})\). Math. Mech. Solids 17, 631–651 (2011). doi:10.1177/1081286511427485

    Article  Google Scholar 

  5. Nicks, R., Parry, G.P.: Group elastic symmetries common to continuum and discrete defective crystals. J. Elast. 115, 131–156 (2014). doi:10.1007/s10659-013-9450-5

    Article  MathSciNet  MATH  Google Scholar 

  6. Olver, P.J.: Equivalence, Invariants and Symmetry. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  7. Davini, C., Parry, G.P.: A complete list of invariants for defective crystals. Proc. R. Soc. Lond. A 432, 341–365 (1991). Erratum: Proc. R. Soc. Lond. A 434, 735 (1991). doi:10.1098/rspa.1991.0125

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Parry, G.P.: Discrete structures in continuum descriptions of defective crystals. Philos. Trans. R. Soc. Lond. A, 374 (2015). doi:10.1098/rsta.2015.0172

  9. Parry, G.P., S̆ilhavý, M.: Elastic invariants in the theory of defective crystals. Proc. R. Soc. Lond. A 455, 4333–4346 (1999). doi:10.1098/rspa.1999.0503

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Elżanowski, M., Preston, S.: On continuously defective elastic crystals. Miskolc Math. Notes 14(2), 659–670 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Palais, R.S.: A global formulation of the Lie theory of transformation groups. Mem. Am. Math. Soc. 22 (1957)

  12. Olver, P.J.: Applications of Lie Groups to Differential Equations, 2nd edn. Graduate Texts in Mathematics, vol. 107. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  13. Cermelli, P., Parry, G.P.: The structure of uniform discrete defective crystals. Contin. Mech. Thermodyn. 18, 47–61 (2006). doi:10.1007/s00161-006-0019-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Gorbatsevich, V.V., Onishchik, A.L., Vinberg, E.B.: Foundations of Lie Theory and Lie Transformation Groups. Springer, Berlin (1997)

    MATH  Google Scholar 

  15. Varadarajan, V.S.: Lie Groups, Lie Algebras, and Their Representations. Prentice Hall, Englewood Cliffs (1974)

    MATH  Google Scholar 

  16. Kisil, V.: Erlangen Program at Large. www1.maths.leeds.ac.uk/~kisilv/courses/epal.pdf. Accessed 26 July 2016

  17. Parry, G.P.: Elastic symmetries of defective crystals. J. Elast. 101, 101–120 (2010). doi:10.1007/s10659-010-9254-9

    Article  MathSciNet  MATH  Google Scholar 

  18. Komrakov, B., Churyumov, A., Doubrov, B.: Two-dimensional homogeneous spaces. Preprint Series 17-Matematisk institutt, Unversitetet i Oslo (1993)

  19. González-López, A., Kamran, K., Olver, P.J.: Lie algebras of vector fields in the real plane. Proc. Lond. Math. Soc. 114, 1163–1185 (1992). doi:10.1112/plms/s3-64.2.339

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are both very grateful to the EPSRC for support provided via Research Grant EP/M024202/1. GP thanks Marek Elżanowski for helpful discussion and hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gareth Parry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parry, G., Zyskin, M. Geometrical Structure of Two-Dimensional Crystals with Non-Constant Dislocation Density. J Elast 127, 249–268 (2017). https://doi.org/10.1007/s10659-016-9612-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-016-9612-3

Keywords

Mathematics Subject Classification (2010)

Navigation