Skip to main content

Advertisement

Log in

Involvement of kaempferol in the defence response of virus infected Arabidopsis thaliana

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The roles of several phenolic compounds in plant defence response have been extensively studied, yet little is known about the role of flavonoids in plant-virus interaction. Quantitative and qualitative changes of selected phenolics in Arabidopsis thaliana induced by Cucumber mosaic virus containing satellite RNA (CMVsat) infection were analysed accompanied by plant hormone, chalcone synthase and pathogenesis-related gene expression analysis. Lower leaves of infected plants had a lower concentration of total phenolics compared to control plants. The concentration of kaempferol in upper leaves of all infected plants was significantly lower compared to control plants, while the expression of the chalcone synthase gene in those leaves was in most cases upregulated. All infected plants had a higher concentration of indole-3-acetic acid in lower leaves, which was accompanied with a lower concentration of kaempferol in upper leaves. Our research demonstrates a correlation between kaempferol and indole-3-acetic acid in response to CMVsat infection in Arabidopsis. We demonstrated two different metabolic patterns in infected plants suggesting the activation of two different defence responses. We also propose kaempferol to be an important part of the auxin-dependent defence response which limits systemic movement of CMVsat and that this defence response is activated prior to the well-known salicylic acid dependent defence response. Further research on kaempferol and its role in Arabidopsis-CMVsat interaction will improve our understanding on the role of flavonoids in plant defence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez, M. E. (2000). Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Molecular Biology, 44, 429–442.

    Article  CAS  PubMed  Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    Article  CAS  PubMed  Google Scholar 

  • Atkins, D., Hull, R., Wells, B., Roberts, K., Moore, P., & Beachy, R. N. (1991). The tobacco mosaic virus 30K movement protein in transgenic tobacco plants is localized to plasmodesmata. Journal of General Virology, 72, 209–211.

    Article  CAS  PubMed  Google Scholar 

  • Beckman, C. H. (2000). Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiological and Molecular Plant Pathology, 57, 101–110.

    Article  CAS  Google Scholar 

  • Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D., Jürgens, G., et al. (2003). Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 115, 591–602.

    Article  PubMed  Google Scholar 

  • Boyes, D. C., Zayed, A. M., Ascenzi, R., McCaskill, A. J., Hoffman, N. E., Davis, K. R., et al. (2001). Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. The Plant Cell, 13, 1499–1510.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown, D. E., Rashotte, A. M., Murphy, A. S., Normanly, J., Tague, B. W., Peer, W. A., et al. (2001). Flavonoids act as negative regulators of auxin transport in vivo in arabidopsis. Plant Physiology, 126, 524–535.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cameron, R. K. (2000). Salicylic acid and its role in plant defense responses: what do we really know? Physiological and Molecular Plant Pathology, 56, 91–93.

    Article  CAS  Google Scholar 

  • Cao, H., Xin, L., & Dong, X. (1998). Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proceedings of the National Academy of Sciences of the United States of America, 95, 6531–6536.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chellappan, P., Vanitharani, R., & Fauquet, C. M. (2005). MicroRNA-binding viral protein interferes with Arabidopsis development. Proceedings of the National Academy of Sciences of the United States of America, 102, 10381–10386.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clarke, S. F., Burritt, D. J., Jameson, P. E., & Guy, P. L. (1998). Influence of plant hormones on virus replication and pathogenesis-related proteins in Phaseolus vulgaris L. infected with white clover mosaic potexvirus. Physiological and Molecular Plant Pathology, 53, 195–207.

    Article  CAS  Google Scholar 

  • Cohen, J. D., Baldii, B. G., & Slovin, J. P. (1986). 13C6-[Benzene Ring]-Indole-3-Acetic Acid. Plant Physiology, 80, 14–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davies, P. J. (2010). The plant hormones: Their nature, occurrence, and functions. In P. J. Davies (Ed.), Plant hormones: Biosynthesis, signal transduction, action! (pp. 1–15). Dordrecht: Springer Netherlands.

    Chapter  Google Scholar 

  • Dempsey, D. A., Pathirana, M. S., Wobbe, K. K., & Klessig, D. F. (1997). Identification of an Arabidopsis locus required for resistance to turnip crinkle virus. The Plant Journal, 11, 301–311.

    Article  CAS  PubMed  Google Scholar 

  • Dixon, R. A. (2001). Natural products and plant disease resistance. Nature, 411, 843–847.

    Article  CAS  PubMed  Google Scholar 

  • Dixon, R. A., & Paiva, N. L. (1995). Stress-induced phenylpropanoid metabolism. The Plant Cell, 7, 1085–1097.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dmitriev, A. P. (2003). Signal molecules for plant defense responses to biotic stress. Russian Journal of Plant Physiology, 50, 417–425.

    Article  CAS  Google Scholar 

  • Dunoyer, P., Lecellier, C.-H., Parizotto, E. A., Himber, C., & Voinnet, O. (2004). Probing the MicroRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. The Plant Cell, 16, 1235–1250.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ehlting, J., Büttner, D., Wang, Q., Douglas, C. J., Somssich, I. E., & Kombrink, E. (1999). Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. The Plant Journal: for Cell and Molecular Biology, 19, 9–20.

    Article  CAS  Google Scholar 

  • Feinbaum, R. L., & Ausubel, F. M. (1988). Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Molecular and Cellular Biology, 8, 1985–1992.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Felix, G., & Meins, F. (1986). Developmental and hormonal regulation of β-1,3-glucanase in tobacco. Planta, 167, 206–211.

    Article  CAS  PubMed  Google Scholar 

  • Fofana, B., Benhamou, N., McNally, D. J., Labbé, C., Séguin, A., & Bélanger, R. R. (2005). Suppression of induced resistance in cucumber through disruption of the flavonoid pathway. Phytopathology, 95, 114–123.

    Article  CAS  PubMed  Google Scholar 

  • Fraser, R. S. S., & Whenham, R. J. (1982). Plant growth regulators and virus infection: a critical review. Plant Growth Regulation, 1, 37–59.

    Article  CAS  Google Scholar 

  • Fuglevand, G., Jackson, J. A., & Jenkins, G. I. (1996). UV-B, UV-A, and blue light signal transduction pathways interact synergistically to regulate chalcone synthase gene expression in Arabidopsis. The Plant Cell, 8, 2347–2357.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Graham, T. L. (1998). Flavonoid and flavonol glycoside metabolism in Arabidopsis. Plant Physiology and Biochemistry, 36, 135–144.

    Article  CAS  Google Scholar 

  • Hagemeier, J., Schneider, B., Oldham, N. J., & Hahlbrock, K. (2001). Accumulation of soluble and wall-bound indolic metabolites in Arabidopsis thaliana leaves infected with virulent or avirulent Pseudomonas syringae pathovar tomato strains. Proceedings of the National Academy of Sciences of the United States of America, 98, 753–758.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hahlbrock, K., Bednarek, P., Ciolkowski, I., Hamberger, B., Heise, A., Liedgens, H., et al. (2003). Non-self recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant/pathogen interactions. Proceedings of the National Academy of Sciences, 100, 14569–14576.

    Article  CAS  Google Scholar 

  • Huang, Z., Yeakley, J. M., Garcia, E. W., Holdridge, J. D., Fan, J.-B., & Whitham, S. A. (2005). Salicylic acid-dependent expression of host genes in compatible arabidopsis-virus interactions. Plant Physiology, 137, 1147–1159.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iglesias, V. A., & Meins, F. (2000). Movement of plant viruses is delayed in a beta-1,3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition. The Plant Journal: for Cell and Molecular Biology, 21, 157–166.

    Article  CAS  Google Scholar 

  • Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6, 3901–3907.

    CAS  PubMed  Google Scholar 

  • Jenkins, T., Bhattacharyya, J., Majetich, G., Teng, Q., De Fatima, A. M., & Almeida, R. (1999). Flavonoids from the root-bark of Dioclea grandiflora. Phytochemistry, 52, 723–730.

    Article  CAS  Google Scholar 

  • Jez, J. M., & Noel, J. P. (2000). Mechanism of chalcone synthase. pKa of the catalytic cysteine and the role of the conserved histidine in a plant polyketide synthase. The Journal of Biological Chemistry, 275, 39640–39646.

    Article  CAS  PubMed  Google Scholar 

  • Johansen, W., & Wilson, R. C. (2008). Viral suppressor proteins show varying abilities and effectiveness to suppress transgene-induced post-transcriptional gene silencing of endogenous Chalcone synthase in transgenic Arabidopsis. Plant Cell Reports, 27, 911–921.

    Article  CAS  PubMed  Google Scholar 

  • Krylov, S. N., Krylova, S. M., Chebotarev, I. G., & Chebotareva, A. B. (1994). Inhibition of enzymatic indole-3-acetic acid oxidation by phenols. Phytochemistry, 36, 263–267.

    Article  CAS  Google Scholar 

  • La Camera, S., Gouzerh, G., Dhondt, S., Hoffmann, L., Fritig, B., Legrand, M., et al. (2004). Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways. Immunological Reviews, 198, 267–284.

    Article  PubMed  Google Scholar 

  • León, J., Rojo, E., & Sánchez-Serrano, J. J. (2001). Wound signalling in plants. Journal of Experimental Botany, 52, 1–9.

    Article  PubMed  Google Scholar 

  • Lewsey, M. G., Gonzales, I., Kalinina, N. O., Palukaitis, P., Canto, T., & Carr, J. P. (2010). Symptom induction and RNA silencing suppression by the cucumber mosaic virus 2b protein. Plant Signaling & Behavior, 5, 705–708.

    Article  CAS  Google Scholar 

  • Li, S., & Strid, A. (2005). Anthocyanin accumulation and changes in CHS and PR-5 gene expression in Arabidopsis thaliana after removal of the inflorescence stem (decapitation). Plant Physiology and Biochemistry, 43, 521–525.

    Article  CAS  PubMed  Google Scholar 

  • Loake, G., & Grant, M. (2007). Salicylic acid in plant defence–the players and protagonists. Current Opinion in Plant Biology, 10, 466–472.

    Article  CAS  PubMed  Google Scholar 

  • Lolli, G., Cozza, G., Mazzorana, M., Tibaldi, E., Cesaro, L., Donella-Deana, A., et al. (2012). Inhibition of protein kinase CK2 by flavonoids and tyrphostins. A structural insight. Biochemistry, 51, 6097–6107.

    Article  CAS  PubMed  Google Scholar 

  • Lozoya, E., Block, A., Lois, R., Hahlbrock, K., & Scheel, D. (1991). Transcriptional repression of light-induced flavonoid synthesis by elicitor treatment of cultured parsley cells. The Plant Journal, 1, 227–234.

    Article  Google Scholar 

  • Martens, S., Preuss, A., & Matern, U. (2010). Multifunctional flavonoid dioxygenases: flavonol and anthocyanin biosynthesis in Arabidopsis thaliana L. Phytochemistry, 71, 1040–1049.

    Article  CAS  PubMed  Google Scholar 

  • Mathesius, U. (2001). Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. Journal of Experimental Botany, 52, 419–426.

    Article  CAS  PubMed  Google Scholar 

  • Mauch-Mani, B., & Slusarenko, A. J. (1996). Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to peronospora parasitica. The Plant Cell, 8, 203–212.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mayers, C. N., Lee, K.-C., Moore, C. A., Wong, S.-M., & Carr, J. P. (2005). Salicylic acid-induced resistance to Cucumber mosaic virus in squash and Arabidopsis thaliana: contrasting mechanisms of induction and antiviral action. Molecular Plant-Microbe Interactions, 18, 428–434.

    Article  CAS  PubMed  Google Scholar 

  • Mumford, F. E., Smith, D. H., & Castle, J. E. (1961). An inhibitor of indoleacetic acid oxidase from pea tips. Plant Physiology, 36, 752–756.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy, A. S., Peer, W. A., & Taiz, L. (2000). Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta, 211, 315–324.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa, T., Ara, T., Aoki, K., Suzuki, H., & Shibata, D. (2010). Transient increase in salicylic acid and its glucose conjugates after wounding in Arabidopsis leaves. Plant Biotechnology, 27, 205–209.

    Google Scholar 

  • Olsen, K. M., Lea, U. S., Slimestad, R., Verheul, M., & Lillo, C. (2008). Differential expression of four Arabidopsis PAL genes; PAL1 and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis. Journal of Plant Physiology, 165, 1491–1499.

    Article  CAS  PubMed  Google Scholar 

  • Palukaitis, P., & García-Arenal, F. (2003). Cucumoviruses. Advances in Virus Research, 62, 241–323.

    Article  CAS  PubMed  Google Scholar 

  • Park, S.-W., Liu, P.-P., Forouhar, F., Vlot, A. C., Tong, L., Tietjen, K., et al. (2009). Use of a synthetic salicylic acid analog to investigate the roles of methyl salicylate and its esterases in plant disease resistance. The Journal of Biological Chemistry, 284, 7307–7317.

    Article  CAS  PubMed  Google Scholar 

  • Peer, W. A., Brown, D. E., Tague, B. W., Muday, G. K., Taiz, L., & Murphy, A. S. (2001). Flavonoid accumulation patterns of transparent testa mutants of arabidopsis. Plant Physiology, 126, 536–548.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peer, W. A., & Murphy, A. S. (2007). Flavonoids and auxin transport: modulators or regulators? Trends in Plant Science, 12, 556–563.

    Article  CAS  PubMed  Google Scholar 

  • Pelletier, M. K., Burbulis, I. E., & Winkel-Shirley, B. (1999). Disruption of specific flavonoid genes enhances the accumulation of flavonoid enzymes and end-products in Arabidopsis seedlings. Plant Molecular Biology, 40, 45–54.

    Article  CAS  PubMed  Google Scholar 

  • Pennazio, S., & Roggero, P. (1996). Plant hormones and plant virus diseases. The auxins. Microbiologica, 19, 369–378.

    CAS  PubMed  Google Scholar 

  • Pfaffl, M. W. (2004). Quantification strategies in real-time PCR. In S. A. Bustin (Ed.), A-Z of quantitative PCR (pp. 87–112). La Jolla: International University Line.

    Google Scholar 

  • Päsold, S., Siegel, I., Seidel, C., & Ludwig-Müller, J. (2010). Flavonoid accumulation in Arabidopsis thaliana root galls caused by the obligate biotrophic pathogen Plasmodiophora brassicae. Molecular Plant Pathology, 11, 545–562.

    Article  PubMed  Google Scholar 

  • Reymond, P., Weber, H., Damond, M., & Farmer, E. E. (2000). Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. The Plant Cell, 12, 707–720.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robert-Seilaniantz, A., Navarro, L., Bari, R., & Jones, J. D. G. (2007). Pathological hormone imbalances. Current Opinion in Plant Biology, 10, 372–379.

    Article  CAS  PubMed  Google Scholar 

  • Rocher, F., Chollet, J.-F., Legros, S., Jousse, C., Lemoine, R., Faucher, M., et al. (2009). Salicylic acid transport in Ricinus communis involves a pH-dependent carrier system in addition to diffusion. Plant Physiology, 150, 2081–2091.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rusak, G., Cerni, S., Polancec Stupin, D., & Ludwig-Müller, J. (2010). The responsiveness of the IAA2 promoter to IAA and IBA is differentially affected in Arabidopsis roots and shoots by flavonoids. Biologia Plantarum, 54, 403–414.

    Article  CAS  Google Scholar 

  • Seskar, M. (1998). Endogenous methyl salicylate in pathogen-inoculated tobacco plants. Plant Physiology, 116, 387–392.

    Article  CAS  PubMed Central  Google Scholar 

  • Sleat, D. E., Zhang, L., & Palukaitis, P. (1994). Mapping determinants within cucumber mosaic virus and its satellite RNA for the induction of necrosis in tomato plants. Molecular Plant-Microbe Interactions, 7, 189–195.

    Article  CAS  PubMed  Google Scholar 

  • Soards, A. J., Murphy, A. M., Palukaitis, P., & Carr, J. P. (2002). Virulence and differential local and systemic spread of cucumber mosaic virus in tobacco are affected by the CMV 2b protein. Molecular Plant-Microbe Interactions, 15, 647–653.

    Article  CAS  PubMed  Google Scholar 

  • Stewart, A. J., Chapman, W., Jenkins, G. I., Graham, I., Martin, T., & Crozier, A. (2001). The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant, Cell and Environment, 24, 1189–1197.

    Article  CAS  Google Scholar 

  • Sticher, L., Mauch-Mani, B., & Métraux, J. P. (1997). Systemic acquired resistance. Annual Review of Phytopathology, 35, 235–270.

    Article  CAS  PubMed  Google Scholar 

  • Summermatter, K., Sticher, L., & Métraux, J.-P. (1995). Systemic responses in Arabidopsis thaliana infected and challenged with pseudomonas syringae pv syringae. Plant Physiology, 108, 1379–1385.

    Google Scholar 

  • Swarup, R., Kramer, E. M., Perry, P., Knox, K., Leyser, H. M. O., Haseloff, J., et al. (2005). Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nature Cell Biology, 7, 1057–1065.

    Article  CAS  PubMed  Google Scholar 

  • Škorić, D., Krajačić, M., Barbarossa, L., Cillo, F., Grieco, F., Šarić, A., et al. (1996). Occurrence of cucumber mosaic cucumovirus with satellite RNA in lethal necrosis affected tomatoes in Croatia. Journal of Phytopathology, 144, 543–549.

    Article  Google Scholar 

  • Takahashi, H., Goto, N., & Ehara, Y. (1994). Hypersensitive response in cucumber mosaic virus-inoculated Arabidopsis thaliana. The Plant Journal, 6, 369–377.

    Article  Google Scholar 

  • Thulke, O., & Conrath, U. (1998). Salicylic acid has a dual role in the activation of defence-related genes in parsley. The Plant Journal: for Cell and Molecular Biology, 14, 35–42.

    Article  CAS  Google Scholar 

  • Tounekti, T., Hernandez, I., & Munne-Bosch, S. (2013). Salicylic acid biosynthesis and role in modulating terpenoid and flavonoid metabolism in plant responses to abiotic stress. In S. Hayat, A. Ahmad, & M. N. Alyemeni (Eds.), Salicylic acid (pp. 141–162). Dordrecht: Springer Netherlands.

    Chapter  Google Scholar 

  • Treutter, D. (2005). Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biology, 7, 581–591.

    Article  CAS  PubMed  Google Scholar 

  • Ulmasov, T., Murfett, J., Hagen, G., & Guilfoyle, T. J. (1997). Aux/lAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. The Plant Cell, 9, 1963–1971.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Veit, M., & Pauli, G. F. (1999). Major flavonoids from Arabidopsis thaliana leaves. Journal of Natural Products, 62, 1301–1303.

    Article  CAS  PubMed  Google Scholar 

  • Venisse, J.-S., Malnoy, M., Faize, M., Paulin, J.-P., & Brisset, M.-N. (2002). Modulation of defense responses of Malus spp. during compatible and incompatible interactions with Erwinia amylovora. Molecular Plant-Microbe Interactions, 15, 1204–1212.

    Article  CAS  PubMed  Google Scholar 

  • Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz-Jawhar, R., Ward, E., et al. (1994). Salicylic acid is not the translocated signal responsible for lnducing systemic acquired resistance but is required in signal transduction. The Plant Cell, 6, 959–965.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, D., Pajerowska-Mukhtar, K., Culler, A. H., & Dong, X. (2007). Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Current Biology: CB, 17, 1784–1790.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, Y., Ogawa, T., & Okada, Y. (1992). In vivo phosphorylation of the 30-kDa protein of tobacco mosaic virus. FEBS Letters, 313, 181–184.

    Article  CAS  PubMed  Google Scholar 

  • Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G. V., & Provart, N. J. (2007). An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PloS One, 2, e718.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yonekura-Sakakibara, K., Tohge, T., Matsuda, F., Nakabayashi, R., Takayama, H., Niida, R., et al. (2008). Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis. The Plant Cell, 20, 2160–2176.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zaprometov, M. N. (1977). The metabolism of flavonoids in higher plants. In L. Farkas, M. Gábor, & F. Kállay (Eds.), Flavonoids and bioflavonoids. current research trends. Proceedings of the 5th Hungarian bioflavonoid symposium (pp. 257–269). Amsterdam: Elsevier.

    Google Scholar 

  • Zhao, J., & Last, R. L. (1996). Coordinate regulation of the tryptophan biosynthetic pathway and indolic phytoalexin accumulation in Arabidopsis. The Plant Cell, 8, 2235–2244.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministry of Science, Education and Sport of the Republic of Croatia and by the Deutscher Akademischer Austausch Dienst. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saša Likić.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 92 kb)

ESM 2

(PDF 124 kb)

ESM 3

(PDF 123 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Likić, S., Šola, I., Ludwig-Müller, J. et al. Involvement of kaempferol in the defence response of virus infected Arabidopsis thaliana . Eur J Plant Pathol 138, 257–271 (2014). https://doi.org/10.1007/s10658-013-0326-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-013-0326-0

Keywords

Navigation