Skip to main content
Log in

Interaction between polygalacturonase-inhibiting protein and jasmonic acid during defense activation in tomato against Botrytis cinerea

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Oligogalacturonic acids (OGAs) generated from in vitro interaction between fungal polygalacturonase (PG) and bean PG-inhibiting protein (PGIP) were shown to activate phytoalexin biosynthesis in soybean. Based on this observation, it was hypothesized that PGIP-dependent generation of OGAs activates plant defence responses in vivo. We tested the hypothesis that PGIP activates jasmonic acid-dependent responses to pathogens. For this purpose, a population of tomato plants segregating for a mutation in the jasmonate receptor CORONATINE INSENSITIVE1 (coi1) and for overexpression of pear PGIP (pPGIP) was challenged with Botrytis cinerea. The coi1 mutant was hypersensitive to B. cinerea, but overexpression of pPGIP in the coi1 mutant background reduced pathogen susceptibility, suggesting that these two genes independently alter defence responses. In addition, pPGIP overexpression suppressed pathogen induction of salicylic acid in the coi1 mutant and activated expression of acidic ß-1,3-glucanase independently of the coi1 mutation. However, expression of proteinase inhibitor II (PIN II) in pPGIP overexpressing tomato plants was dependent on COI1. Effects of pPGIP overexpression on defence are therefore complex and only in the case of PIN II pPGIP acts through COI1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Audenaert, K., De Meyer, G. B., & Hofte, M. M. (2002). Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppress salicylic acid-dependent signaling mechanisms. Plant Physiology, 128, 491–501.

    Article  CAS  PubMed  Google Scholar 

  • Bishop, P. D., Makus, D. J., Pearce, G., & Ryan, C. A. (1981). Proteinase inhibitor-inducing factor activity in tomato leaves resides in oligosaccharides enzymically released from cell walls. Proceedings of the National Academy of Sciences of the United States of America, 78, 3536–3540.

    Article  CAS  PubMed  Google Scholar 

  • Cervone, F., Hahn, M. G., De Lorenzo, G., Darvill, A., & Albersheim P. (1989). Host-pathogen interactions XXXIII. A plant protein converts a fungal pathogenesis factor into an elicitor of plant defense responses. Plant Physiology, 90, 542–548.

    Google Scholar 

  • Diaz, J., ten Have, A., & van Kan, J. A. L. (2002). The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Plant Physiology, 129, 1341–1351.

    Article  CAS  PubMed  Google Scholar 

  • Ding, C. K., Wang, C. Y., Gross, K. C., & Smith, D. L. (2002). Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta, 214, 895–901.

    Article  CAS  PubMed  Google Scholar 

  • Doares, S. H., Syrovets, T., Weiler, E. W., & Ryan, C. A. (1995). Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proceedings of the National Academy of Sciences of the United States of America, 92, 4095–4098.

    Article  CAS  PubMed  Google Scholar 

  • Engelberth, J., Alborn, H. T., Schmelz, E. A., & Tumlinson, J. H. (2004). Airbone signals prime plants against insect herbivore attack. Proceedings of the National Academy of Sciences of the United States of America, 101, 1781–1785.

    Article  CAS  PubMed  Google Scholar 

  • Ferrari, S., Plotnikova, J. M., De Lorenzo, G., & Ausubel, F. M. (2003a). Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requireds EDS4 and PAD2, but not SID2, EDS5 or PAD4. The Plant Journal, 35, 193–205.

    Article  CAS  Google Scholar 

  • Ferrari, S., Vairo, D., Ausubel, F. M., Cervone, F., & De Lorenzo, G. (2003b). Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transdution pathways in response to fungal infection. The Plant Cell, 15, 93–106.

    Article  CAS  Google Scholar 

  • Ferrari, S., Galletti, R., Vairo, D., Cervone, F., & De Lorenzo, G. (2006). Antisense expression of the Arabidopsis thaliana AtPGIP1 gene reduces polygalacturonase-inhibiting protein accumulation and enhances susceptibility to Botrytis cinerea. Molecular Plant-Microbe Interactions, 19, 931–936.

    Article  CAS  PubMed  Google Scholar 

  • Ferrari, S., Galletti, R., Denoux, C., De Lorenzo, G., Ausubel, F. M., & Dewdney, J. (2007). Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiology, 144, 367–379.

    Article  CAS  PubMed  Google Scholar 

  • Govrin, E. M., & Levine, A. (2002). Infection of Arabidopsis with a necrotrophic pathogen, Botrytis cinerea, elicits various defense responses but does not induce systemic acquired resistance (SAR). Plant Molecular Biology, 48, 267–276.

    Article  CAS  PubMed  Google Scholar 

  • Green, T. R., & Ryan, C. A. (1972). Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science, 175, 776–777.

    Article  CAS  PubMed  Google Scholar 

  • Guimaraes, R. L., Chetelat, R. T., & Stotz, H. U. (2004). Resistance to Botrytis cinerea in Solanum lycopersicoides is dominant in hybrids with tomato, and involves induced hyphal death. Europian Journal of Plant Pathology, 110, 13–23.

    Article  Google Scholar 

  • Gustafson, G., & Ryan, C. A. (1976). Specificity of protein turnover in tomato leaves. Accumulation of proteinase inhibitors, induced with the wound hormone, PIIF. The Journal of Biological Chemistry, 251, 7004–7010.

    CAS  PubMed  Google Scholar 

  • Klarzynski, O., Plesse, B., Joubert, J.-M., Yvin, J.-C., Kopp, M., & Kloareg, B. (2000). Linear B-1, 3 glucans are elicitors of defense responses in tobacco. Plant Physiology, 124, 1027–1037.

    Article  CAS  PubMed  Google Scholar 

  • Kloek, A. P., Verbsky, M. L., Sharma, S. B., Schoelz, J. E., Vogel, J., Klessig, D. F., et al. (2001). Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms. The Plant Journal, 26, 509–522.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Zhao, Y., McCaig, B. C., Wingerd, B. A., Wang, J., Whalon, M. E., et al. (2004). The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. The Plant Cell, 16, 126–143.

    Article  CAS  PubMed  Google Scholar 

  • Miklas, P. N., Stavely, J. R., & Kelly, J. D. (1993). Identification and potential use of a molecular marker for rust resistance in common bean. Theoretical and Applied Genetics, 85, 745–749.

    Article  CAS  Google Scholar 

  • Powell, A. L. T., van Kan, J., ten Have, A., Visser, J., Greve, L. C., & Bennett, A. B. (2000). Transgenic expression of pear PGIP in tomato limits fungal colonization. Molecular Plant-Microbe Interactions, 13(9), 942–950.

    Article  CAS  PubMed  Google Scholar 

  • Sharrock, K. R., & Labavitch, J. M. (1994). Polygalacturonase inhibitors of Bartlett pear fruits: differential effects on Botrytis cinerea polygalacturonase isozymes, and influence on products of fungal hydrolysis of pear cell walls and on ethylene induction in cell culture. Physiological and Molecular Plant Pathology, 45, 305–319.

    Article  CAS  Google Scholar 

  • Stotz, H. U., Bishop, J., Bergmann, C., Koch, M., Albersheim, P., Darvill, A., et al. (2000). Identification of target amino acids that affect interactions of fungal polygalacturonases and their plant inhibitors. Physiological and Molecular Plant Pathology, 56, 117–130.

    Article  CAS  Google Scholar 

  • Stotz, H. U., Elad, Y., Powell, A. L. T., & Labavitch, J. M. (2004). Innovative biological approaches to Botrytis suppression. In Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, pathology and control (pp. 369–392). Dordrecht: Kluwer.

    Google Scholar 

  • Thomma, B. P. H. J., Eggermont, K., Penninckx, I. A. M. A., Mauch-Mani, B., Vogelsang, R., Cammue, B. P. A., et al. (1998). Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proceedings of the National Academy of Sciences of the United States of America, 95, 15107–15111.

    Article  CAS  PubMed  Google Scholar 

  • van Kan, J. A. L., Cozijnsen, T., Danhash, N., & De Wit Pierre, J. G. M. (1995). Induction of tomato stress protein mRNAs by ethephon, 2, 6-dichloroisonicotinic acid and salicylate. Plant Molecular Biology, 27, 1205–1213.

    Article  PubMed  Google Scholar 

  • Vicedo, B., Flors, V., de la O leyva, M., Finiti, I., Kravchuk, Z., Real, M. D., Garcia-Agustin, P., Gonzalez-Bosch, C. (2009). Hexanoic acid-induced resistance against Botrytis cinerea in tomato plants. Molecular Plant-Microbe Interactions 22(11): 1455–1465.

Download references

Acknowledgements

This work was funded by a National Science Foundation Grant IOB 0544504.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aya Akagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akagi, A., Engelberth, J. & Stotz, H.U. Interaction between polygalacturonase-inhibiting protein and jasmonic acid during defense activation in tomato against Botrytis cinerea . Eur J Plant Pathol 128, 423–428 (2010). https://doi.org/10.1007/s10658-010-9684-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-010-9684-z

Keywords

Navigation