Environmental Geochemistry and Health

, Volume 36, Issue 4, pp 713–734

A compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa and China: separating fads from facts

Authors

    • Departamento de Ingeniería Geológica y Minera, Escuela Universitaria Politécnica de AlmadénUniversidad de Castilla-La Mancha
    • Instituto de Geología Aplicada (IGeA)Universidad de Castilla-La Mancha
  • Roberto Oyarzun
    • Instituto de Geología Aplicada (IGeA)Universidad de Castilla-La Mancha
    • Departamento de Cristalografía y Mineralogía, Facultad de Ciencias GeológicasUniversidad Complutense
  • Joze Kotnik
    • Department of Environmental SciencesJozef Stefan Institute
  • José María Esbrí
    • Instituto de Geología Aplicada (IGeA)Universidad de Castilla-La Mancha
  • Alba Martínez-Coronado
    • Instituto de Geología Aplicada (IGeA)Universidad de Castilla-La Mancha
  • Milena Horvat
    • Department of Environmental SciencesJozef Stefan Institute
  • Miguel Angel López-Berdonces
    • Instituto de Geología Aplicada (IGeA)Universidad de Castilla-La Mancha
  • Willians Llanos
    • Exploraciones Mineras S.A. (EM)
  • Orlando Vaselli
    • Dipartimento di Scienze della TerraUnversitá di Florence
  • Barbara Nisi
    • CNR-IGG Istituto di Geoscienze e Georisorse
  • Nikolay Mashyanov
    • Department of GeologySt. Petersburg State University
  • Vladimir Ryzov
    • Department of GeologySt. Petersburg State University
  • Zdravko Spiric
    • OIKON, Institute for Applied Ecology
  • Nikolay Panichev
    • Department of ChemistryTshwane University of Technology
  • Rob McCrindle
    • Department of ChemistryTshwane University of Technology
  • Xinbin Feng
    • State Key Laboratory of Environmental Geochemistry, Institute of GeochemistryChinese Academy of Sciences
  • Xuewu Fu
    • State Key Laboratory of Environmental Geochemistry, Institute of GeochemistryChinese Academy of Sciences
  • Javier Lillo
    • Escuela Superior de Ciencias Experimentales y TecnologíaUniversidad Rey Juan Carlos
  • Jorge Loredo
    • Departamento de Explotación y Prospección de Minas, E.T.S. Ingenieros de MinasUniversidad de Oviedo
  • María Eugenia García
    • Facultad de Ciencias QuímicasUniversidad Mayor de San Andrés
  • Pura Alfonso
    • Departament d’Enginyeria Minera i Recursos MineralsUniversitat Politècnica de Catalunya
  • Karla Villegas
    • Departament d’Enginyeria Minera i Recursos MineralsUniversitat Politècnica de Catalunya
    • Escuela de PostgradoUniversidad Técnica de Oruro
  • Silvia Palacios
    • Instituto de Geología Aplicada (IGeA)Universidad de Castilla-La Mancha
    • Departament d’Enginyeria Minera i Recursos MineralsUniversitat Politècnica de Catalunya
  • Jorge Oyarzún
    • Instituto de Geología Aplicada (IGeA)Universidad de Castilla-La Mancha
    • Departamento de Ingeniería de MinasUniversidad de la Serena
  • Hugo Maturana
    • Instituto de Geología Aplicada (IGeA)Universidad de Castilla-La Mancha
    • Departamento de Ingeniería de MinasUniversidad de la Serena
  • Felicia Contreras
    • Facultad de Agronomía (Maracay)Universidad Central de Venezuela
  • Melitón Adams
    • Facultad de Agronomía (Maracay)Universidad Central de Venezuela
  • Sergio Ribeiro-Guevara
    • Centro Atomico
  • Luise Felipe Niecenski
    • Universidade Federal do Rio Grande
  • Salvatore Giammanco
    • Instituto Nazionale di Geofisica e Volcanologia
  • Jasna Huremović
    • Prirodno matematicki fakultet
Original Paper

DOI: 10.1007/s10653-013-9591-2

Cite this article as:
Higueras, P., Oyarzun, R., Kotnik, J. et al. Environ Geochem Health (2014) 36: 713. doi:10.1007/s10653-013-9591-2

Abstract

Mercury is transported globally in the atmosphere mostly in gaseous elemental form (GEM, \( {\text{Hg}}_{\text{gas}}^{0} \)), but still few worldwide studies taking into account different and contrasted environmental settings are available in a single publication. This work presents and discusses data from Argentina, Bolivia, Bosnia and Herzegovina, Brazil, Chile, China, Croatia, Finland, Italy, Russia, South Africa, Spain, Slovenia and Venezuela. We classified the information in four groups: (1) mining districts where this contaminant poses or has posed a risk for human populations and/or ecosystems; (2) cities, where the concentration of atmospheric mercury could be higher than normal due to the burning of fossil fuels and industrial activities; (3) areas with natural emissions from volcanoes; and (4) pristine areas where no anthropogenic influence was apparent. All the surveys were performed using portable LUMEX RA-915 series atomic absorption spectrometers. The results for cities fall within a low GEM concentration range that rarely exceeds 30 ng m−3, that is, 6.6 times lower than the restrictive ATSDR threshold (200 ng m−3) for chronic exposure to this pollutant. We also observed this behavior in the former mercury mining districts, where few data were above 200 ng m−3. We noted that high concentrations of GEM are localized phenomena that fade away in short distances. However, this does not imply that they do not pose a risk for those working in close proximity to the source. This is the case of the artisanal gold miners that heat the Au–Hg amalgam to vaporize mercury. In this respect, while GEM can be truly regarded as a hazard, because of possible physical–chemical transformations into other species, it is only under these localized conditions, implying exposure to high GEM concentrations, which it becomes a direct risk for humans.

Keywords

Gaseous elemental mercuryAtmospheric pollutionMining districtsCitiesPristine locationsVolcanosHazardsRisks

Copyright information

© Springer Science+Business Media Dordrecht 2013