Environmental Geochemistry and Health

, Volume 36, Issue 4, pp 713–734

A compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa and China: separating fads from facts

  • Pablo Higueras
  • Roberto Oyarzun
  • Joze Kotnik
  • José María Esbrí
  • Alba Martínez-Coronado
  • Milena Horvat
  • Miguel Angel López-Berdonces
  • Willians Llanos
  • Orlando Vaselli
  • Barbara Nisi
  • Nikolay Mashyanov
  • Vladimir Ryzov
  • Zdravko Spiric
  • Nikolay Panichev
  • Rob McCrindle
  • Xinbin Feng
  • Xuewu Fu
  • Javier Lillo
  • Jorge Loredo
  • María Eugenia García
  • Pura Alfonso
  • Karla Villegas
  • Silvia Palacios
  • Jorge Oyarzún
  • Hugo Maturana
  • Felicia Contreras
  • Melitón Adams
  • Sergio Ribeiro-Guevara
  • Luise Felipe Niecenski
  • Salvatore Giammanco
  • Jasna Huremović
Original Paper

DOI: 10.1007/s10653-013-9591-2

Cite this article as:
Higueras, P., Oyarzun, R., Kotnik, J. et al. Environ Geochem Health (2014) 36: 713. doi:10.1007/s10653-013-9591-2

Abstract

Mercury is transported globally in the atmosphere mostly in gaseous elemental form (GEM, \( {\text{Hg}}_{\text{gas}}^{0} \)), but still few worldwide studies taking into account different and contrasted environmental settings are available in a single publication. This work presents and discusses data from Argentina, Bolivia, Bosnia and Herzegovina, Brazil, Chile, China, Croatia, Finland, Italy, Russia, South Africa, Spain, Slovenia and Venezuela. We classified the information in four groups: (1) mining districts where this contaminant poses or has posed a risk for human populations and/or ecosystems; (2) cities, where the concentration of atmospheric mercury could be higher than normal due to the burning of fossil fuels and industrial activities; (3) areas with natural emissions from volcanoes; and (4) pristine areas where no anthropogenic influence was apparent. All the surveys were performed using portable LUMEX RA-915 series atomic absorption spectrometers. The results for cities fall within a low GEM concentration range that rarely exceeds 30 ng m−3, that is, 6.6 times lower than the restrictive ATSDR threshold (200 ng m−3) for chronic exposure to this pollutant. We also observed this behavior in the former mercury mining districts, where few data were above 200 ng m−3. We noted that high concentrations of GEM are localized phenomena that fade away in short distances. However, this does not imply that they do not pose a risk for those working in close proximity to the source. This is the case of the artisanal gold miners that heat the Au–Hg amalgam to vaporize mercury. In this respect, while GEM can be truly regarded as a hazard, because of possible physical–chemical transformations into other species, it is only under these localized conditions, implying exposure to high GEM concentrations, which it becomes a direct risk for humans.

Keywords

Gaseous elemental mercuryAtmospheric pollutionMining districtsCitiesPristine locationsVolcanosHazardsRisks

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Pablo Higueras
    • 1
    • 2
  • Roberto Oyarzun
    • 2
    • 3
  • Joze Kotnik
    • 4
  • José María Esbrí
    • 2
  • Alba Martínez-Coronado
    • 2
  • Milena Horvat
    • 4
  • Miguel Angel López-Berdonces
    • 2
  • Willians Llanos
    • 5
  • Orlando Vaselli
    • 6
  • Barbara Nisi
    • 7
  • Nikolay Mashyanov
    • 8
  • Vladimir Ryzov
    • 8
  • Zdravko Spiric
    • 9
  • Nikolay Panichev
    • 10
  • Rob McCrindle
    • 10
  • Xinbin Feng
    • 11
  • Xuewu Fu
    • 11
  • Javier Lillo
    • 12
  • Jorge Loredo
    • 13
  • María Eugenia García
    • 14
  • Pura Alfonso
    • 15
  • Karla Villegas
    • 15
    • 16
  • Silvia Palacios
    • 2
    • 15
  • Jorge Oyarzún
    • 2
    • 17
  • Hugo Maturana
    • 2
    • 17
  • Felicia Contreras
    • 18
  • Melitón Adams
    • 18
  • Sergio Ribeiro-Guevara
    • 19
  • Luise Felipe Niecenski
    • 20
  • Salvatore Giammanco
    • 21
  • Jasna Huremović
    • 22
  1. 1.Departamento de Ingeniería Geológica y Minera, Escuela Universitaria Politécnica de AlmadénUniversidad de Castilla-La ManchaAlmadénSpain
  2. 2.Instituto de Geología Aplicada (IGeA)Universidad de Castilla-La ManchaAlmadénSpain
  3. 3.Departamento de Cristalografía y Mineralogía, Facultad de Ciencias GeológicasUniversidad ComplutenseMadridSpain
  4. 4.Department of Environmental SciencesJozef Stefan InstituteLjubljanaSlovenia
  5. 5.Exploraciones Mineras S.A. (EM)ProvidenciaChile
  6. 6.Dipartimento di Scienze della TerraUnversitá di FlorenceFlorenceItaly
  7. 7.CNR-IGG Istituto di Geoscienze e GeorisorsePisaItaly
  8. 8.Department of GeologySt. Petersburg State UniversityPetersburgRussian Federation
  9. 9.OIKON, Institute for Applied EcologyZagrebCroatia
  10. 10.Department of ChemistryTshwane University of TechnologyArcadia, PretoriaSouth Africa
  11. 11.State Key Laboratory of Environmental Geochemistry, Institute of GeochemistryChinese Academy of SciencesGuiyangChina
  12. 12.Escuela Superior de Ciencias Experimentales y TecnologíaUniversidad Rey Juan CarlosMóstoles, MadridSpain
  13. 13.Departamento de Explotación y Prospección de Minas, E.T.S. Ingenieros de MinasUniversidad de OviedoOviedoSpain
  14. 14.Facultad de Ciencias QuímicasUniversidad Mayor de San AndrésLa PazBolivia
  15. 15.Departament d’Enginyeria Minera i Recursos MineralsUniversitat Politècnica de CatalunyaCatalunyaSpain
  16. 16.Escuela de PostgradoUniversidad Técnica de OruroOruroBolivia
  17. 17.Departamento de Ingeniería de MinasUniversidad de la SerenaLa SerenaChile
  18. 18.Facultad de Agronomía (Maracay)Universidad Central de VenezuelaMaracayVenezuela
  19. 19.Centro AtomicoBarilocheArgentina
  20. 20.Universidade Federal do Rio GrandePorto AlegreBrazil
  21. 21.Instituto Nazionale di Geofisica e VolcanologiaCataniaItaly
  22. 22.Prirodno matematicki fakultetSarajevoBosna and Herzegovina