, Volume 8, Issue 2, pp 169-198

One-dimensional numerical modelling of dam-break waves over movable beds: application to experimental and field cases

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

This paper reports a numerical study on dam-break waves over movable beds. A one-dimensional (1-D) model is built upon the Saint-Venant equations for shallow water waves, the Exner equation of sediment mass conservation and a spatial lag equation for non-equilibrium sediment transport. The set of governing equations is solved using an explicit finite difference scheme. The model is tested in various idealized experimental cases, with fairly good agreement between the numerical predictions and measurements. Discrepancies are observed at the earlier stage of the dam-break wave and around the dam location due to no vertical velocity component being taken into account. Sensitivity tests confirm that the friction coefficient is an important parameter for the evaluation of sediment transport processes operating during a dam-break wave. The influence of the non-equilibrium adaptation length (or the lag distance) is negligible on the wavefront celerity and weak on the free surface and bed profiles, which indicates that one may ignore the spatial lag effect in dam-break wave studies. Finally, the simulation of the Lake Ha!Ha! dyke-break flood event shows that the model can provide relevant results if a convenient formula for computing the sediment transport capacity and an appropriate median grain diameter of riverbed material are selected.